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Abstract
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mands, we provide an estimate of perceived expected excess returns and show that
they are significantly affected by experienced returns. The effect of past returns is
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playing recency and primacy bias. Finally, we estimate an average coefficient of rela-
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2 NICOLAI AND RISTESKA

How do investors form their return expectations? Do they take all available infor-

mation into account? Does personal experience play a crucial role in the formation of

expectations? We attempt to answer these questions by looking at mutual fund man-

agers’ stock return expectations as revealed by their portfolio holdings. We exploit the

fact that, under a large class of models, the optimal portfolio rule has a similar functional

form; using a three dimensional panel consisting of the portfolio holdings of mutual fund

managers over a period of thirty-five years, we are able to extract a measure of subjective

expected returns for every manager in our panel by exploiting the variation across stocks

over time between and within managers. To see this, consider a mean-variance investor

for whom the vector of physical expected returns is given by the following formula:

Ei,t[rt+1 − rf1] = γi,tΣtw
∗
i,t (1)

where Ei,t[·] is the conditional expectation operator taken under investor i’s information

set at time t, rt+1 − rf1 is a vector of excess returns, γi,t is the coefficient of relative risk

aversion of manager i at time t, Σt is the conditional covariance matrix of stock returns

and w∗
i,t is the time t vector of optimal portfolio weights of investor i. The above ex-

pression for expected excess returns is obtained by inverting the first-order condition of

a mean-variance investor provided that we have a good measure of conditional covari-

ances Σt
1. In Section 2.1 we show that - as long as we correctly interpret the manager-

specific time-varying parameter γi,t - many optimal portfolio models give rise to a sub-

jective expected return similar to (1); whenever that is not the case, we can saturate the

model with fixed effects in order to split the total demand into a mean-variance compo-

nent and a hedging component; to isolate the effect of risk aversion from the effect of

subjective expected returns we resort to the very general principle that, given the cross-

section of assets the manager invests in, risk aversion is a manager-specific quantity,

1In these regards we follow Merton (1980) and argue that investors’ disagreement should mainly regard
expected returns and not variances and covariances. We will show that empirically this is a good approxi-
mation.
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REVEALED EXPECTATIONS AND LEARNING BIASES 3

while expected returns are at the same time asset-specific. The information contained in

the cross section of holdings, therefore, greatly reduces the issue of separating the varia-

tion due to the manager’s preferences from the one due to beliefs.

We start by providing evidence in Section 3 that more than 50% of the variation in ex-

pected returns is explained by a common time-varying factor and we are able to explain

almost 90% of the variation with manager-time and stock-time components. This sug-

gests that a saturated regression will likely allow us to isolate the idiosyncratic part of

expected returns affected by manager-stock-time specific effects; we will focus on this

component to explore the extent to which managers’ beliefs are affected by experience.

In particular, we investigate whether fund managers put more emphasis on past stock

returns that they have personally experienced over their investment career. To begin,

we consider the effect of the simple average of past observed returns on portfolio hold-

ings decisions. Having experienced a one standard deviation higher average return on a

given stock causes the manager to inflate his expected excess return by between 10.3 and

15.1 basis points, partialling out the effect of common stock and manager characteristics.

The result is both statistically and economically significant and it is almost an order of

magnitude larger than other commonly used predictors. Nonetheless, the effect of av-

erage experienced returns masks important heterogeneity in the effect of past returns

observed a different points in time: when we move on to examining the particular shape

of the learning curve we find evidence of a differential effect. We start by providing non-

parametric results that let us avoid taking a stance on the precise functional form that

investors use to weight past experienced returns. Mutual fund managers in our sample

are subject to the so-called serial-position effect: the tendency to predominantly remem-

ber the initial and the last observations in a series. More precisely, managers’ investment

decisions and beliefs are particularly affected by the returns they have experienced early

on during their stock-specific experience and those they have experienced most recently.

In other words, professional investors seem to exhibit the primacy and recency bias.

As one would expect, the effect is stronger for single-managed funds and decays fast as
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4 NICOLAI AND RISTESKA

the number of managers increases: the effect of recently experienced returns on man-

agers in a single managed fund is twice as large compared to managers working with at

least one other professional; the effect of early returns is an order of magnitude larger.

We also show that the differential effect of taxes on capital gains and losses cannot ex-

plain these findings, as proven by the fact that the effect of early career experience is still

present even when the manager switches to a different fund. At most, tax considerations

can explain 20% of the estimated influence of past returns on portfolio choices and ex-

pected returns.

Armed with the reduced-form evidence, we provide a tentative structural estimation of

the managers’ learning function. In particular, the results in the reduced-form estimation

seem to suggest a non-monotonic learning function. For this reason we adopt a varia-

tion of the parametrisation of the learning function in Malmendier and Nagel (2016) that

allows for a variety of decreasing and increasing, convex and concave, monotone and

non-monotone learning weights. We find that fund managers on average do indeed

place a disproportionate weight on personal past experience and that this biases the ex-

pected returns recovered from their stock holdings, after having adjusted for risk and

risk aversion. When we allow for time-varying weights on past stock returns, we show

that mutual fund managers tend to place excessive weight on returns experienced at the

beginning of their careers and in the most recent quarters compared to those in the mid-

dle period, suggesting that both early-career and recent experience seem to be important

determinants of the investment behaviour of a large class of professional investors. As

an example, a manager with the median stock-specific experience of 9 quarters assigns

around 1.84 times larger weight on the return experienced in the most recent quarter

compared to the benchmark of 1/9, while the weight on the first experienced return is

3.13 times larger compared to the benchmark. We thus reconcile two conflicting strands

of the literature: similarly to Malmendier and Nagel (2011) and Malmendier and Nagel

(2016), we confirm that investors do overweight their personal experience and manifest

a recency bias, but - at the same time - we show that professional investors also place a
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REVEALED EXPECTATIONS AND LEARNING BIASES 5

disproportionately large weight on returns that have been experienced in the early part

of their investing career, similarly to the findings of Kaustia and Knüpfer (2008) and Hir-

shleifer et al. (2019). When looking at co-managed funds, we show that a large fraction of

the effect of early experience washes out while the effect of recently experienced returns

persists; this might be due to the fact that, while there is large heterogeneity in early

experience, recently experienced returns are mostly shared among managers within a

team.

Finally, in the last part of the paper we briefly focus our attention on risk preferences. No-

tice from equation (1) that, while risk aversion varies at the manager-time level, beliefs

vary at the manager-time-stock level. This lets us separate variation in adjusted portfo-

lio holdings that is due to the managers’ risk appetite from differences in believes, but

does not guide us regarding their level. Once we make some minimal assumptions to pin

down their level, we show that individual expected returns tend to be quite biased and

that preferences display significant heterogeneity across individuals and time. More-

over, on average, mutual fund managers display an Arrow (1965)-Pratt (1964) coefficient

of relative risk aversion between 0.915 and 1.283.

The rest of the paper is organized as follows: Section 1 provides an overview of re-

cent literature. We proceed by showing that most of the literature relies on evidence

from surveys obtained from non-professional investors or, when not affected by these

concerns, on a relatively limited amount of data. We argue that the present paper tries to

solve the aforementioned issues. Section 2 describes how we can separate the variation

in expected returns from the variation in risk aversion or other factors in a wide class

of models. Section 3 gives details of the data used in our empirical work and provides

some summary statistics. Section 4 provides the non-parametric results of our analysis,

while Section 5 describes and show the results of our parametric approach. In Section 6,

we tackle the question of the level of risk aversion of investment professionals. Finally,

Section 7 provides concluding remarks.

Electronic copy available at: https://ssrn.com/abstract=3301279



6 NICOLAI AND RISTESKA

1 Previous Literature

The issue of whether economic agents learn with experience has been explored to some

extent by the existing literature. Evidence from the literature in psychology and eco-

nomics shows that personal experience exerts a larger influence on behaviour compared

to other shared sources of information2, especially very recent and very early experi-

ence. These two phenomena are usually referred to as the recency and the primacy effect

and they generate what is known to researchers in psychology as the U-shaped serial-

position curve3.

Diving deeper into the field of finance there is growing evidence that personal experi-

ence affects financial behaviour. Kaustia and Knüpfer (2008) and Chiang et al. (2011)

show that the likelihood of participating in subsequent IPOs is affected by returns ex-

perienced in previous offerings. Choi et al. (2009) provide evidence that investors with

high return or low volatility on their 401(k) savings tend to invest a larger fraction of

their wealth. Using data from the Survey of Consumer Finances from 1960 to 2007, Mal-

mendier and Nagel (2011) find that individuals born before the 1920s who have experi-

enced the lackluster stock market returns during the Great Depression report higher risk

aversion, lower expected returns and are less likely to invest in the stock market. Those

that happened to experience lower bond market returns tend to reduce their bond hold-

ings. They also find that returns experienced in the previous year contribute four to six

times more to future investment decisions than those experienced thirty years ago. In a

similar vein, Malmendier and Nagel (2016) analyse the effect of life-time experience on

2For early evidence on the concept of reinforcement learning, see the seminal study by Thorndike (1898).
A large body of theoretical and empirical literature studies the role of personal experience in learning, see,
for instance, Tversky and Kahneman (1973) for a discussion of the availability bias, Fazio et al. (1978) for
experimental evidence on the differential processing of information that results from direct versus indirect
experience, Roth and Erev (1995) and Erev and Roth (1998) for experimental data and theory regarding
learning in sequential games, Camerer and Ho (1999) for a combined model of reinforcement and belief-
based learning, Simonsohn et al. (2008) for experimental analysis of the effect of personal experience in a
game theory context.

3The psychology literature on these topics goes beyond the scope of this paper. Among others, see
Nipher (1878), Ebbinghaus (1913) and Murdock (1962) for evidence on the serial-position effect; for evidence
on the primacy effect, see Asch (1946); the recency effect is explored by Deese and Kaufman (1957). See
Murdock (1974) for a survey.
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REVEALED EXPECTATIONS AND LEARNING BIASES 7

inflation expectations using the Reuters/Michigan Survey of Consumers; they show that

the effect is stronger for younger respondents, and has a direct effect on their borrowing

and savings decisions. Malmendier et al. (2017) analyse the effect of experienced infla-

tion on members of the FOMC board and find similar results. Greenwood and Nagel

(2009) investigate the effect of experience on mutual fund managers during the dot.com

bubble of the late 1990s. The authors use age as a proxy for experience and show that

younger managers were investing more in technology stocks compared to similar older

managers and displaying a more pronounced trend-chasing behavior. Chernenko et al.

(2016) study the effect of experience on a panel of mutual funds holdings of MBS dur-

ing the 2003-2007 mortgage boom and show that less experienced managers had larger

positions in these securities, especially those backed by subprime mortgages; moreover

they show that personal experience outside of the fund had an effect on portfolio choice

behaviour. Andonov and Rauh (2018) analyse the effect of experienced returns on a

cross-section of U.S. Pension Fund managers, showing a significant effect of past expe-

rience on the expected returns that these investors report in annual target asset alloca-

tions; in particular, earlier experiences have a stronger effect on investment behaviour.

Giglio et al. (2019) look at retail investors’ portfolio allocations and match them to be-

liefs elicited from surveys. They find that stated beliefs have a low explanatory power

for the timing of trades, however, they are able to predict the direction and size of those

trades that do occur. Finally, there is evidence that experienced risk affects financial be-

haviour: Knüpfer et al. (2017) show that experienced labour market distress affects port-

folio choices, while Lochstoer and Muir (2019) find that individuals have extrapolative

beliefs about market volatility.

While the contribution of the above papers is substantial, we argue that most of them

are affected by one or more of the following issues: reliance on evidence obtained from

surveys where agents report their subjective expected returns, focus on non-professional

investors who spend limited time investing and, usually, invest relatively small amounts,

and reliance on limited time-series or cross-sections implying that it is harder to perform
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8 NICOLAI AND RISTESKA

statistical inference.

Regarding the first issue, the task of recovering investors’ expectations is a particularly

tricky one. It is well known at least since Harrison and Kreps (1979) that asset prices

reveal only risk-neutral expectations of market participants; a way to circumvent this

problem is, therefore, to focus attention on expectations elicited from surveys. Most of

these measures seem to display high correlations as Greenwood and Shleifer (2014) point

out. However Cochrane (2017) argues that there is no guarantee that people report their

”true-measure unconditional mean” in surveys. In these regards, Klaus et al. (2018) pro-

vide evidence that surveyed expected returns are inconsistent with risk-neutral expected

returns, ambiguity averse/robust expected returns or any other risk-adjusted returns4.

However, nothing guarantees that the reported expected returns are exactly representa-

tive of the mathematical physical expectation of investors. Consider for instance a survey

respondent that interprets the question as asking “what is the most likely return“ instead

of “what is the expected return“. In that case, the respondent will provide a measure of

the modal return rather than its average taken across states of the world. Although the

previous example may seem far-fetched, Martin (2017) shows that - for a log investor

who holds the market - the physical distribution of returns is asymmetric and, for in-

stance, at the height of the crisis, while the expected return on the S&P 500 was above

20% per year, the author recovers a probability of almost 20% of a 20% decline in the

index. Large probability masses far from the mean imply large discrepancies between

modal, median and average returns. Beliefs reflected in portfolio choices are more infor-

mative and represent the primary object of interest, given that it is ultimately changes

in demand and supply that determine the variation in prices. Malmendier and Nagel

(2011), Andonov and Rauh (2018) and Giglio et al. (2019) show that portfolio choices are

consistent with stated beliefs, but the explanatory power is only partial, while - by con-

struction - our beliefs are fully consistent with trading behaviour.

Regarding the second issue, we argue that there are reasons to believe that sophisticated

4Appendix A shows that our framework can also deal with this type of preferences.
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REVEALED EXPECTATIONS AND LEARNING BIASES 9

professional investors might behave differently compared to households and, for this

reason, we have decided to focus our attention on mutual fund managers; they also rou-

tinely follow the stock market and therefore there might be reasons to expect them to be

less prone to biases or memory issues. While this seems to be true in the case of IPO

subscriptions (Chiang et al., 2011), we show that our investors display large biases even

though we cannot provide a direct comparison to households. It should also be noted

that, to the extent that these financial intermediaries represent a large fraction of total

stock market activity, their beliefs will be an important driver of stock price movements.

Finally, concerning the third issue, many of the papers dealing with institutional in-

vestors focus on specific events (e.g., Greenwood and Nagel (2009) or Chernenko et al.

(2016)) or rely on limited time series data (e.g., Andonov and Rauh (2018)). The aim of

the present paper is to be more general and explore whether the effect of experienced

returns is common across periods and stocks and represents a permanent trait of profes-

sional investors’ behaviour.

2 Methodology

In this section we provide a detailed description of our empirical strategy. We first ex-

plain how we obtain a measure of expected returns given portfolio holdings. We argue

that in a wide set of models - including a mean-variance benchmark - we are able to

separate the effect of risk and risk aversion from the effect of return beliefs by using the

cross-section of manager holdings. We then describe the way we deal with the issue of

estimating covariance matrices and, finally, our plan for identifying risk aversion.

2.1 Recovering Subjective Expected Returns

Portfolio choices reveal information about future stock return expectations: this is the

main insight of Sharpe (1974) indirect approach to mean-variance optimisation whereby

beliefs about expected returns are inferred from portfolio holdings, rather than the other
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10 NICOLAI AND RISTESKA

way around5. Consider the problem of an investor trying to maximise his value function

by choosing his portfolio allocations into N risky and one risk-free assets:

max
{wt,...}

J(Wt) (2)

where J(.) is the value function of the investor evaluated at the current wealthWt. When

returns follow a geometric Brownian motion, the law of motion for wealth is:

dWt

Wt
= rfdt+w′t(µt − rf1)dt−∆Ctdt+w′tΣ

1
2
t dZt (3)

where rf is the instantaneous risk-free rate (or the instantaneous rate of return of any

other reference asset with respect to which excess returns are computed), µt is an N × 1

vector of stock return drifts, wt is an N × 1 vector of stock portfolio weights, Σ
1
2 is an

N × N matrix of instantaneous loadings on the Brownian motion processes Zt, ∆Ct is

the (net) outflow of resources6, and 1 is an N × 1 vector of ones.

The investor chooses his optimal portfolio by selecting wt. Notice that we have de-

liberately remained vague about other potential choice variables, i.e., in what follows,

our analysis derives solely from the optimality conditions for the portfolio holdings and

the fact that current wealth is the only state variable. Standard dynamic optimisation

arguments (Back, 2017) give the following optimality condition:

w∗
t = − JWt

WtJWtWt

Σ−1
t (µt − rf1) (4)

where JWt and JWtWt are the first and second derivatives of the value function with

5Black and Litterman (1992) start from the same insight to obtain portfolio holdings that combine the
manager’s views with average realised returns in a consistent way; Cohen et al. (2008) and Shumway et al.
(2011) use a similar approach to extract a measure of beliefs from portfolios holdings. The former paper
measures the best ideas of mutual funds as the investment positions for which the authors can extract the
largest expected returns, while the latter analyses the rationality implications of extracted beliefs.

6For a standard consumption maximisation problem we can interpret ∆Ct = Ct−Yt
Wt

, i.e., the instan-
taneous flow of consumption Ct net of the income flow Yt, expressed as a fraction of wealth Wt. In this
setting ∆Ct can be loosely interpreted as the net outflow of money the mutual fund manager is subject to
in each period because of redemptions/creation of new fund shares. Because of Markovianity we have that
∆C = ∆C(Wt).
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REVEALED EXPECTATIONS AND LEARNING BIASES 11

respect to current wealth and therefore − JWt
WtJWtWt

is the Arrow (1965)-Pratt (1964) coeffi-

cient of instantaneous relative risk aversion measuring the curvature of the value func-

tion with respect to wealth, which we will denote γi,t ≡ − JWt
WtJWtWt

. Notice that equation

(4) is a generalisation of the optimal demand employed by Koijen and Yogo (2019)7. We

can invert the optimality condition (4) in order to get an expression for expected excess

returns as a function of optimal holdings and Σt. In particular, we have that

µi,t − rf1 =
1

γi,t
Σtw

∗
i,t (5)

If we had information about the level of the investor’s risk aversion γi,t and the covari-

ance matrix Σt, we could obtain an exact measure of his subjective expectations of future

one-period ahead excess returns µi,t − rf1. We follow Merton (1980) in arguing that in-

vestors should share beliefs regarding Σt; we will provide later evidence in support of

this assumption. To isolate the effect of γi,t, let us consider each element of the vector of

excess returns µi,t−rf1. At each point in time t, for each stock j, each manager i forms a

measure of expected excess return which we can denote by (µi,t−rf1)j
8. By simply keep-

ing track of the subscripts one can realise that there is variation in expected returns across

managers, stocks and time, i.e., along the three dimensions i, j, t. On the other hand, the

coefficient of relative risk aversion γi,t varies only at the i-t level, implying that the cross-

section of holdings for manager i at time t gives us enough information to isolate the

variation in beliefs from the variation in the risk aversion which acts as a level shifter on

the demand for risky assets9. When instantaneous returns are normally distributed and

wealth is the only state variable, any utility function (and therefore any value function

J(Wt)) gives rise to a demand as the one in (4). We can extend this approach to a wide
7The optimal demand in equation (7) of Koijen and Yogo (2019) is equivalent to our specification when-

ever − JWt
WtJWtWt

= 1, i.e., investors have logarithmic utility. It is easy to incorporate short sale constraints in
our setting as we show in Appendix A.

8(µi,t − rf1)j is the j−th element of the vector of expected excess returns for manager i, time t, i.e.,
µi,t − rf1 = [(µi,t − rf1)1, ..., (µi,t − rf1)j , ..., (µi,t − rf1)N ]′.

9For the reader who is familiar with the textbook mean-variance optimisation, this is analogous to the
fact that the selection of the tangency portfolio does not depend on the investor’s risk aversion which merely
influences the relative proportion of wealth invested in the risk-free and risky assets.
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12 NICOLAI AND RISTESKA

class of models where there is an L × 1 vector of Markovian state variables Xt with the

following law of motion:

dXt = φ(Xt)dt+ Γ(Xt)dZt (6)

Standard dynamic optimisation arguments imply that, in that case, the optimal demand

will be:

w∗
t = − JWt

WtJWtWt

Σ−1
t

(
(µt − rf1)−

L∑

l=1

JWtXl,t

JWt

Kl,t

)
(7)

where
JWtXl,t
JWt

=
∂ log JWt
∂Xl,t

measures the semi-elasticity of the marginal utility of wealth

JWt with respect to the Markovian state variable Xl,t, and Kl,t = Σ
1
2
t Γl,t represents the

vector of instantaneous covariances between returns and the state variable Xl,t. Let us

denote the hedging demand Ht ≡
∑L

l=1

JWtXl,t
JWt

Kl,t. There are many settings in which

we can still disentangle variation in beliefs from variation in hedging demands10. First,

we might consider the possibility that the mutual fund is facing borrowing constraints.

In this case the expected return can be recovered from:

(µi,t − rf1)j =
1

γi,t

(
Σtw

∗
i,t

)
j

+Hi,t (8)

Similarly, suppose mutual funds managers are ranked according to a common summary

statistic (e.g. alpha over a benchmark). The expected excess return can then be approxi-

mated by:

(µi,t − rf1)j =
1

γi,t

(
Σtw

∗
i,t

)
j

+Hj,t (9)

The previous examples show that, by saturating the regressions with the proper fixed

effects, we are able to use the cross-section of assets of a particular investor to separate

the effect of changes in beliefs (which vary at the i, j, t level) from the effect of changes in

risk aversion (varying at the i, t level) and hedging demand (as long as the latter varies

at a coarser level). As a caveat, notice that the only situation where we would be un-

10For more details, see Appendix A where we analyse the case of borrowing and short selling constraints,
concerns about model misspecification and the issue of benchmarking.
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REVEALED EXPECTATIONS AND LEARNING BIASES 13

able to separate changes in the hedging demand from changes in beliefs is if the hedging

demand varied at the stock-manager-time level (i.e., we had Hi,j,t). This would under-

mine any attempt to recover variation in beliefs from variation in portfolio holdings;

however, the results in the paper would not lose their relevance. First of all, as shown by

Moreira and Muir (2019) in the case of time-varying expected returns and volatilities, op-

timal portfolios can be closely approximated by an affine transformation of the standard

mean-variance portfolio. Second, even if expected excess returns cannot be separated

from hedging demands, it is not easy to conceive of a story where past experience has

a large impact on hedging demands. Third, even if this were the case, we could still

interpret all the results in terms of scaled demands (Σtw
∗
i,t) as opposed to beliefs. As-

set prices are ultimately determined by investors’ holdings and the variation thereof; it

would be nice to know whether the effect on investors’ demands goes through expected

returns (µi,t − rf1), risk aversion (γi,t) or hedging demands (H), but ultimately what

matters is the fact that part of the variation in the cross-section and the time-series of

assets holdings is due to the returns that the agent has experienced. Having said that,

in what follows, we are going to impose the previously discussed restrictions in order

to disentangle between the different mechanisms. We are, therefore, going to assume

that the issue of hedging demands can be solved by saturating the regression with the

appropriate level of fixed effects. In the following two sections, we are going to tackle

the two remaining problems, namely, the estimation of the conditional covariance matrix

and level of risk aversion.

2.2 Estimating the covariance matrix

As can be seen in the previous section, in order to construct a measure of one-period

ahead expected excess returns, we need to have a measure of the conditional covariance

matrices. In this paper we will rely on an argument set forth by Merton (1980), which

states that, in principle, all investors should agree on Σt since it can be very precisely

estimated by using increasingly more granular data. In practice it is unavoidable to take

Electronic copy available at: https://ssrn.com/abstract=3301279



14 NICOLAI AND RISTESKA

a stance on how to estimate the conditional covariance matrix. To make sure that our

results do not depend on the chosen estimator for Σt, we decide to take three different

approaches for this exercise:

1. As a first measure, we compute the sample covariance matrix of stock returns:

Σ̂d,1
t =

1

t− 1
(Rt − r̄t1′)(Rt − r̄t1′)′

where Rt = [r1,t, ..., rj,t, ..., rN,t]
′ is an N × t matrix that contains past realised

returns as rows, r̄t is anN×1 vector that collects sample average returns computed

at time t, and 1 is a t × 1 vector of ones. We estimate Σ̂d,1
t from a one-year rolling

window of daily returns11 and we scale it by K = nb. obs.
nb. quarters = 63.07 days to obtain

our first estimator as Σ̂1
t = K × Σ̂d,1

t . It is well known that it is extremely hard

to estimate correlations between stocks and correlations close to unity in absolute

value tend to give extreme long-short portfolios. For this reason we resort to the

next two measures of the sample covariance matrix;

2. Our second estimate makes use of a Bayesian Stein Shrinkage estimator. We fol-

low Touloumis (2015) and compute the daily covariance matrix Σ̂d,2
t as a weighted-

average of the sample covariance matrix Σ̂d,1
t and a target matrix Σtarget which

imposes zero correlations across stocks:

Σ̂d,2
t = λΣ̂d,1

t + (1− λ)Σtarget

where Σtarget is a diagonal matrix where the elements on the diagonal are the sam-

ple estimated variances, namely Σtarget = Σ̂d,1
t ∗ IN where ∗ denotes the Hadamard

product and IN is a N × N identity matrix where N is the number of stocks. The

11The reader might be worried about the fact that we estimate expected returns employing covariance
matrices that rely on past return data, to subsequently regress on past realised returns. However, notice
that the same covariance estimates are shared in the cross-section of managers, which is not true for past
experienced returns. Furthermore, our estimates of covariance matrices employ only one year of data while
the average manager has more than three years of experience with a given stock.
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REVEALED EXPECTATIONS AND LEARNING BIASES 15

estimator of quarterly covariances is then: Σ̂2
t = K × Σ̂d,2

t ;

3. In our third and final approach, we again apply a similar Bayesian Stein Shrinkage

Estimator:

Σ̂d,3
t = λΣ̂d,1

t + (1− λ)Σ̃target

Following Ledoit and Wolf (2004), Σ̃target is a diagonal matrix with the constant

average daily sample variance on the diagonal, namely Σ̃target =
tr(Σ̂d,1t )

N IN , where

tr(Σ̂d,1
t ) is the trace of the covariance matrix, and IN is a N × N identity matrix

where N is the number of stocks. The estimator is then: Σ̂3
t = K × Σ̂d,3

t .

More details on the construction of Σ̂2
t and Σ̂3

t and the optimal choice of λ are provided in

Appendix B. We will show in the rest of the paper that the way we compute the covari-

ance matrices is not very relevant for our results. This should be expected, given that, as

long as managers’ estimates of covariances are very similar in the cross-section, up to the

first order, the covariance matrix behaves like a stock-time fixed effect and therefore will

be absorbed by those in the saturated regressions.

2.3 Recovering Risk Aversion

Having discussed the identification of hedging demands and the way we estimate co-

variance matrices, we now turn to the issue of risk aversion. Let us first disregard any

hedging demand for simplicity. The portfolio choice in that case takes the form of (4).

It is important to notice that, while we can separate changes in, we are unable to de-

termine the level of γi,t, the investor’s risk aversion. As a simple example, notice that

γ̃i,t = 2×γi,t and µ̃i,t−rf1 = 2×(µi,t−rf1) would yield the exact same portfolio choice

as that implied by γi,t and µi,t − rf1. In Section 6, we will impose a plausible restriction

on the level of subjective expected returns and risk aversion, namely, that fund managers

expectations are formed in such a way to minimise the difference with ex-post realised
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16 NICOLAI AND RISTESKA

returns12. Start from the following identities:

rt+1 − rf1 = Et[rt+1 − rf1] + εt+1 (10)

= (µi,t − rf1) + εi,t+1 (11)

=
γi,t
γi,t

(µi,t − rf1) + εi,t+1 (12)

= γi,t(Σtw
∗
i,t) + εi,t+1 (13)

The first line of the above expression is a definition for εt+1: realized returns have to

be equal to expected returns plus an orthogonal prediction error. In the second line,

we assume that the subjective expectation (µi,t − rf1) and the error εi,t+1 made by the

investor are orthogonal. This can be interpreted as a requirement that the expected return

is consistent with the law of iterated expectations 13. The third line multiplies and divides

this expectation by the investor’s risk aversion γi,t. In the empirical counterpart, this will

require that the instantaneous relative risk aversion is known to the manager at time

t. Finally, we use equation (5) to rewrite (12) as (13). We can, therefore, pin down the

level of risk aversion γi,t by running multiple regressions across managers and/or time

of stock realised returns on scaled portfolio weights. For instance, if we think that risk

aversion is a manager-specific quantity we can run the following regression:

rj,t+1 − rf = αi + βi(Σtw
∗
i,t)j + εi,j,t+1 (14)

12Conditional expectations are the best predictor in a mean square sense, i.e. given the information set
Ft and the random variable yt+1, the conditional expectation Et[yt+1|Ft] minimises E[(yt+1 − ft)2] over all
the Ft-measurable functions ft.

13To see this remember that, according to our notation, the expected excess return of manager i using his
information set at time t is Ei,t[rt+1 − rf1] = µi,t − rf1. We can therefore rewrite (11) as rt+1 − rf1 =
Ei,t[rt+1−rf1]+(rt+1−rf1−Ei,t[rt+1−rf1]). If the law of iterated expectations applies under manager
i’s expectation, i.e., if Ei[Ei,t[rt+1 − rf1]] = Ei[rt+1 − rf1], it is easy to show that:

– Ei[(rt+1 − rf1− Ei,t[rt+1 − rf1])] = 0, i.e., no unconditional bias,

– Ei[Ei,t[rt+1 − rf1](rt+1 − rf1−Ei,t[rt+1 − rf1])′] = 0N×N , i.e., the perceived expected return and
the error are uncorrelated.
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where rj,t+1− rf is the realised excess return of stock j from time t to t+ 1, and (Σtw
∗
i,t)j

is the expected excess return of stock j for manager i, at time t obtained by using the

optimal demand w∗i,t of the same manager scaled by the conditional covariance matrix

Σt. The estimate for αi will then be a measure of the bias or residual hedging demand.

If αi = 0, i.e., the bias or hedging demand is not statistically different from zero, we

would then be able to interpret the estimate for βi as the average coefficient of relative

risk aversion of manager i, that is βi = γi. It is important to notice that, while it might

be interesting to pin down the level of risk aversion and beliefs of each manager, the

identification of the learning parameters comes from differential changes in beliefs in the

cross-section of stocks held, hence it is not affected by our choice of the risk aversion

parameter.

3 Data and Summary Statistics

In this section we will describe the data that we will use in the empirical analysis. Data

on mutual funds and mutual fund managers’ information are obtained from the Center

for Research on Security Prices (CRSP) Mutual Fund database. Given that we aim to

conduct our analysis at the fund manager level, as opposed to the fund level, we need

to construct a dataset of managers’ careers. To do this, we first obtain a list of the man-

agers that at any point in time are managing at least one equity fund. We then split

each occurrence of multiple managers managing a fund at the same time into separate

observations. We also disregard all the cases in which no manager name is available

and all the observations where we have words such as ”team”, ”group”, ”partners” or

others that do not allow us to infer who was managing the fund. The most challeng-

ing part, however, is to account for the cases in which a typo in the fund manager’s

name causes CRSP to treat the same manager as two different individuals. As an illus-

tration, an individual named John Smith could, for example, appear as ”John Smith”, ”J.

Smith”, ”J Smith” or just ”Smith”. In order to tackle this issue, we first match names into
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18 NICOLAI AND RISTESKA

pairs using a string matching algorithm. We match similar names using three different

string distances: the cosine, Jaccard and Jaro-Wrinkler metrics, and we apply rather large

distance-specific thresholds that allow us to keep the names which are sufficiently close.

We subsequently proceed by manually checking the matched results which amount to

more than 15,000 pairs of matched names. Out of these pairs, our manual exercise left

us with roughly 20% of real matches which suggests that we have been quite flexible

with the distance thresholds. We would also like to stress the fact that, although our

manual check might have contained some errors, i.e., false positive matches and/or false

match rejections, so long as these mistakes were random they will only introduce noise

in our estimates and not cause any bias. More details on the process are provided in

Appendix B. After having matched the names, we assign a unique index to each man-

ager in order to build their careers. This exercise leaves us with 3,214 unique managers

in our sample. We next match the above managerial data with CRSP mutual fund data

based on the first and last date when a manager has been managing a given fund. We

remove index funds, fixed-income funds and funds which mainly own foreign equities

following Evans (2010), Benos et al. (2010) and Kacperczyk et al. (2006)14. We then match

the fund information with mutual fund holdings data from the Thomson-Reuters Insti-

tutional Holdings database, using Russ Wermer’s MFLinks tables. We finally merge the

above data with CRSP data on stock returns and risk-free rates and Compustat-Capital

IQ data on firm fundamentals. Since we have monthly mutual fund and return data

while holdings data are only available on a quarterly basis, we compute quarterly stock

returns from the CRSP monthly data and proceed by merging with Compustat quarterly

data. The final dataset comprises of over 13 millions observations for 3,214 distinct man-

agers in the period 1980-201515. Table 1 provides descriptive statistics. The first panel

reports summary statistics regarding average and median past returns experienced by

14Details on the funds that have been removed can be found in Appendix B.
15The number of observations includes a sizeble fraction of holdings that have zero weights but are

included because they are part of the manager investment universe. The investment universe is constructed
similarly to Koijen and Yogo (2019).
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Table 1 : Summary Statistics
The table reports summary statistics for the data used. Column x̄ reports the sample average of each
variable, column σ its standard deviation, Min the smallest observation, Q1 the first quartile, Median the
50th percentile, Q3 the third quartile, Max the largest observation and N the number of observations.
The first panel reports summary statistics regarding average and median past returns experienced by
managers. The second panel reports six measures of expected excess returns computed as Σ̂twt. Rows
(1)-(3) report results without wi,j,t = 0, namely including in the computations only strictly positive
weights; rows (4)-(6) include zero weights on stocks that belong to the manager’s investment universe.
Rows (1) and (4) use sample covariance matrices Σ̂1

t , rows (2) and (5) use Touloumis (2015) covariance
matrices Σ̂2

t and rows (3) and (6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation

of Σ̂twt. The third panel reports summary statistics on managers’ careers; experience refers to the num-
ber of quarters since the first time a certain stock appeared in the manager’s portfolio; max.experience
refers to the maximum experience achieved for each manager-stock pair; tenure refers to the number of
quarters since the first time the manager appeared in sample.

x̄ σ Min Q1 Median Q3 Max N

Experienced Returns

average 0.024 0.100 -0.557 -0.010 0.026 0.063 0.607 13, 912, 677

median 0.014 0.111 -0.871 -0.026 0.021 0.062 1.198 13, 912, 677

Expected Excess Returns

(1) 0.012 0.015 -0.282 0.004 0.007 0.014 1.336 5, 416, 032

(2) 0.011 0.014 -0.208 0.003 0.006 0.012 0.806 5, 416, 032

(3) 0.011 0.015 -0.161 0.003 0.006 0.013 0.764 5, 416, 032

(4) 0.012 0.015 -0.278 0.004 0.007 0.014 0.766 12, 707, 119

(5) 0.011 0.015 -0.292 0.003 0.006 0.012 1.086 12, 707, 119

(6) 0.011 0.015 -0.319 0.003 0.006 0.013 1.034 12, 707, 119

Managers Careers

experience 13.158 12.853 1 4 9 17 139 13, 912, 677

max. experience 13.884 11.981 1 6 11 17 139 1, 223, 610

tenure 26.896 21.943 1 10 21 39 139 75, 179
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managers. As one should expect, past experienced returns tend to be right skewed with

mean average returns that are larger than mean median returns (2.4% and 1.4%, respec-

tively). While the standard deviation of average experienced returns is similar to the one

of median experienced returns (10% and 11% respectively), counterintuitively, the latter

seem to be more dispersed, implying that negative experienced returns tend to be right

skewed (so that the median is smaller than the average) and positive experienced returns

tend to be left skewed (so that the median is larger than the average).

The second panel of Table 1 regards expected returns, which have been computed

as explained in Section 2.1. In the rest of the paper we will provide six measures of ex-

pected excess returns which we will denote (1)-(6). The first issue regards the inclusion

of zero weights16. Measures (1)-(3) include only positive weights, while measures (4)-(6)

do include the zero weights17. Measures (1) and (4) use sample covariance matrices Σ̂1
t ,

measures (2) and (5) use Touloumis (2015) covariance matrices Σ̂2
t and measures (3) and

(6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t . It is clear from the table that the

measures are quite similar in terms of summary statistics. All the measures have an aver-

age expected excess return of about 1% per quarter and a median expected excess return

of about 0.6%. It should also be noted that, while we have about 12.7 million data points

if we consider the zero weights, the number of observations drops to about 5.4 million

once we remove the zeros. Figure 1 sheds light on the sources of variation in beliefs. We

provide a decomposition of the variation in expected excess returns according to measure

(1) by regressing it against various fixed effects. Manager and stock fixed effects explain

a small fraction of excess returns (11.63% and 14.20%, respectively), while time fixed ef-

fects explain more than half (55.73%) of the variation. This suggests that manager and

stock immutable characteristics are relatively less important than aggregate time-varying

16Similarly to the present paper, Koijen and Yogo (2019) discuss how the analysis might be affected by
including or excluding zero weights.

17It might be important to know whether zero weights arise by choice or because the manager cannot
short sell stocks that would otherwise appear with negative weights. Appendix A shows how the optimal
choice of a manager is affected by short selling constraints and how to deal with them when trying to recover
beliefs.
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Figure 1 : Explained R2

The figure reports the fraction of variation in expected excess returns explained by various fixed effects.
For (1), (2) and (3) we report the R2 of the following regression µi,j,t − rf = Hk. (1) reports results for
manager fixed effects, i.e.,Hk = Hi; (2) for stock fixed effectsHk = Hj ; (3) for time fixed effectsHk = Ht.
(4) reports the R2 for separate manager, stock and time fixed effects, i.e., µi,j,t − rf = Hi +Hj +Ht. (5)
reports the results for manager-time and stock fixed effects, i.e., µi,j,t − rf = Hi,t + Hj . (6) reports the
results for manager and stock-time fixed effects, i.e., µi,j,t − rf = Hi + Hj,t. (7) reports the results for
manager-time and stock-time fixed effects, i.e., µi,j,t − rf = Hi,t +Hj,t.
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factors in the formation of expectations. When we separately include manager, stock and

time fixed effects the explanatory power rises to almost seventy percent (68.21%). If we

allow for interactions between fixed effects, we can explain up to almost ninety percent

(89.43%) of the variation in expected excess returns when we include manager-time and

stock-time fixed effects. From this decomposition we learn that the largest part of the

changes in expected returns is due to time-varying factors, then stock specific character-

istics and, finally, factors related to the manager. Adding manager-time and stock-time

fixed effects will remove the greatest majority of the variation in expected excess re-

turns and will, thus, ensure that the results will be driven by idiosyncratic variation in

expected returns unexplained by systematic factors. This gives more credibility to our

identification strategy.
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Figure 2 : Managers’ Careers
The upper panel shows the distribution of starting date for the managers’ careers, as the first date we
can track the manager in sample. The bottom panel shows the distribution of tenure across managers
and dates as the difference between the current date and the starting date in quarters.
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Finally, we consider the data related to the managers’ careers which can be analysed

with the help of the last panel of Table 1 and Figures 2 and 3. The upper panel of Figure

2 provides information regarding the experience of the managers in the sample. We plot

the number of managers by the first time they appear in the sample, which we call the

starting date of the fund manager and denote it by ti,0. The sample extends from 1980

to 2015 and covers a period of 35 years. Notice, however, that there are fewer managers

who start their career in the first ten years compared to the rest of the sample. This can

be attributed to low data coverage during the 1980s. Most of the managers in our sample

begin their career in the late 1990s. We can observe, however, a wide range of manager

starting dates up until the last sample year. We then proceed to construct a tenure vari-

able which measures how many quarters have passed since the start of the manager’s

career, i.e., for a given manager i and date t, tenurei,t = t− ti,018. The lower panel of fig-

18Notice that for each manager we disregard the first quarter of experience, i.e., ti,0, when computing the
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ure 2 displays the number of managers with a given level of accumulated tenure over the

sample period, i.e., the empirical distribution of (t− ti,0) for all i, t. Most of the managers

in our sample are relatively young and inexperienced, but again, there is quite a large

variation in tenure as well, ranging from less than a year up to some managers that are

present in the whole sample (i.e., for a period of 35 years). Note that, by construction, the

number of observations with a given level of accumulated tenure should be decreasing

as, for example, a manager who has 5 quarters of accumulated tenure must also have

accumulated 4 quarters of experience previously. In practice, this could be violated for

two reasons: the first reason is that mutual funds were required to report holdings at a

semi-annual level up until 2003 and only later regulators enforced quarterly reporting,

as a result, some funds used to report holdings on a quarterly basis while others did so

only on a semi-annual basis prior to 2003; second, there might be some missing data in

our sample which means that we might be able to observe a given manager’s career and

holdings in a particular quarter but not in the previous one. The bottom panel of Table

1 shows that the average tenure is of 26.9 quarters (almost 7 years), but because of the

positive skewness manifested in Figure 2, a median of only 22 quarters (5.5 years). We

then proceed to the main object of interest of the paper, which is the relationship between

each manager and stock. Figure 3 describes the relationship between fund managers and

individual stock holdings. The first panel displays the date when a given stock-manager

pair has first appeared in our sample which we call the starting date. For each man-

ager i and stock j we can denote the starting date as ti,j,0. Unsurprisingly, the largest

number of such initiations have occurred in the late nineties and early 2000s, i.e., when

the number of managers in our sample significantly increases. There is, however, large

variation in the stock-manager starting dates which we will exploit as part of our iden-

tification strategy. To see this, the second histogram depicts the length of the personal

experience of a given manager with a given stock, i.e., for each manager i, stock j and

date t, experiencei,j,t = t− ti,j,0. It is clear from the histogram that there is a large varia-

statistic.
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Figure 3 : Stock-Manager Experience
The upper panel depicts the starting date of each manager-stock pair ti,j,0, as the first date in which
we observe a certain manager i holding a certain stock j. The middle panel shows the distribution of
stock-manager experience, i.e., for any date t, manager i and stock j experiencei,j,t = t − ti,j,0. The
bottom panel reports the distribution of the maximal experience achieved for each manager-stock pair,
i.e., max. experience

i,j
= maxt{experience

i,j,t
}.
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tion in experience. The third panel of Table 1 shows that it ranges from 1 to 139 quarters,

with a standard deviation of about 12.9 quarters. The standard deviation is of similar

magnitude compared to the average (about 13.2 quarters) and the median experience (9

quarters). The main hypothesis of the paper is that this variation in stock-specific experi-

ence will be associated with a variation in expected returns across managers. Finally, we

can look at the maximal experience achieved for each stock-manager pair, in the bottom

panel of Figure 3 and Table 119. While the average maximal experience and the standard

deviation are similar to the above (13.9 and 12 quarters respectively), the median maxi-

mal experience is larger (11 quarters compared to 9 quarters of experience).

In the next section, we are going to present the reduced-form results of our empirical

19For each manager i and stock j, the maximal experience is defined as max. experience
i,j

=
maxt{experience

i,j,t
}.
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analysis.

4 Reduced-Form Results

The main hypothesis of the paper is that past experienced returns affect expected fu-

ture returns. Moreover, if that is the case, we would like to further explore whether

certain periods carry more relevance than others. In what follows, we will show that

differential stock-specific experience across managers indeed matters in the formation of

expectations and, in particular, differences in the first and the most recent few quarters

of experience play the most crucial role.

The empirical specification in this section will rely on the following argument: we con-

jecture that the manager will try to estimate future returns by looking at the returns he

has experienced over his career. A manager i with Ti,j,t quarters of experience with a

given stock j at time t might use the average experienced return as a sufficient statistic

when forming expectations, i.e., his expected return for that stock can be represented as:

Ei,t[rj,t+1] = βr̄i,j,t = β


 1

Ti,j,t

Ti,j,t∑

k=1

rj,t+1−k


 (15)

where r̄i,j,t denotes the equal-weighted average of stock j returns observed over the in-

vestor’s experience. Notice that the variation in the length of past experience Ti,j,t allows

us to exploit the cross-section of managers holding a given stock j as our source of differ-

ential treatment20. The coefficient β captures the average effect that past observed returns

have on expectations formation, while the implicit constant weight ωk = ω = 1
Ti,j,t

means

that all past observations are equally-weighted. This choice implies that investors attach

equal importance to all observations, however, as the length of experience grows every

observation receives a progressively lower weight. Note that this approach does not re-

strict managers from incorporating other sources of information in their estimation. This

20On the other hand, the variation in the length of past experience Ti,j,t for a given manager i at time t
across different stocks is what helps us in disentangling preferences from expected returns.
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Table 2 : The Effect of Average Experienced Returns
The table reports the parameter estimates obtained from the following regression: µi,j,t − rf = βr̄i,j,t +
Hi,t +Hj,t + εi,j,t, where µi,j,t − rf is the recovered expected one-period ahead return of manager i for
stock j at time t, r̄i,j,t is the standardised equal-weighted average experienced return, Hi,t is a manager-
time fixed effect, andHj,t is a stock-time fixed effect. Standard errors are clustered at the same level of the
fixed effects and are reported in parentheses. Columns (1)-(3) report results without wi,j,t = 0, namely
including in the computations only strictly positive weights; columns (4)-(6) include zero weights on
stocks that belong to the manager’s investment universe. Columns (1) and (4) use sample covariance
matrices Σ̂1

t , columns (2) and (5) use Touloumis (2015) covariance matrices Σ̂2
t and columns (3) and (6)

use Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation of Σ̂twt..

Expected Returns

(1) (2) (3) (4) (5) (6)

β 0.103∗∗∗ 0.103∗∗∗ 0.105∗∗∗ 0.149∗∗∗ 0.148∗∗∗ 0.151∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

N 1, 270, 823 1, 270, 823 1, 270, 823 2, 856, 830 2, 856, 830 2, 856, 830

R2 0.781 0.765 0.773 0.709 0.692 0.695

Within-R2 0.006 0.006 0.006 0.009 0.009 0.009

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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can be easily taken into account by saturating the regression with the proper fixed effects.

To reiterate, in this case the fixed effects would account for the information that all man-

agers, or all stocks in the portfolio of a given manager, have in common; the coefficient on

the average experienced return would thus provide a measure of the incremental effect

of experience21. We, therefore, show in Table 2 the results of the following regression:

µi,j,t − rf = βr̄i,j,t +Hi,t +Hj,t + εi,j,t (16)

where µi,j,t−rf is the recovered expected one-period ahead return of manager i for stock

j at time t, r̄i,j,t is the previously defined equal-weighted average experienced return22,

Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. To better disen-

tangle the effect of experience we focus on the subsample of single-managed funds23.

The results in the table confirm our main hypothesis: having experienced an increase of

one standard deviation in average quarterly return leads to an increase in the expected

excess return of between 0.103% and 0.151%; the results are both economically and sta-

tistically large and display very minor variation across specifications. This validates our

intuition that the estimation method for the covariance matrix is not very consequen-

tial. Similarly, the inclusion of the zero weights has no effect on our main findings, even

though the drop in R-squared shows that the zeros are indeed informative and cannot be

fully explained by the fixed effects alone. The within R-squared shows that the average

experienced returns explain between 0.6% and 0.9% of the variation in expected returns.

While this might seem low, it is in fact in line with the findings of Koijen and Yogo

(2019) that observable characteristics explain a small part of the variation in investors’

demands which is mostly explained by latent factors. Table 1 in Appendix D reports the

results of a similar regression with manager-time and stock fixed effects, and a number of

21Notice that this implies that managers could very well use all past realised returns when they form
expectations and this would be absorbed by the stock-time fixed effects. In particular, β would then measure
the relative over-weighting of experienced returns.

22All the regressions in the paper use standardised explanatory variables for ease of interpretation.
23Section 4.1 will analyse the case of co-managed funds, showing indeed that most of the effect washes

out when we aggregate across managers.
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time-varying stock characteristics, namely, profitability, investment, book-to-market ra-

tio, market equity, and dividend-price ratio. The findings are similar in magnitude and

statistically significant, and show that the effect of experienced returns is almost an order

of magnitude larger than other known characteristics, confirming again the findings of

Koijen and Yogo (2019) that standard predictors have a hard time explaining portfolio

choices24.

So far, we have assumed that the effect of experience is homogeneous. Alternatively,

we could allow for more flexible weights in order to investigate whether certain peri-

ods matter more than others. Consider the following modified weight: ωk = δk
Ti,j,t

, such

that 1
Ti,j,t

∑Ti,j,t
k=1 δk = 1. Namely, the manager estimates future returns from the weighted

average of past experienced returns:

Ei,t[rj,t+1] = β

Ti,j,t∑

k=1

δk
Ti,j,t

rj,t+1−k =

Ti,j,t∑

k=1

βδk
rj,t+1−k
Ti,j,t

=

Ti,j,t∑

k=1

β̃kr̃j,t+1−k (17)

The weighting term δk is a number centered around one measuring the relative over- or

under-weighting of a given past observation. If δk < 1, then returns observed k-periods

ago are under-weighted, while if δk > 1 they are over-weighted relatively to the previous

benchmark. The last equality in equation (17) shows that if we rewrite β̃k = βδk and

r̃t+1−k =
rt+1−k
Ti,j,t

, then we can run a regression on experience-adjusted returns and obtain:

β =
1

Ti,j,t

Ti,j,t∑

k=1

β̃k, δk =
β̃k
β

(18)

that is, the average effect of past experience can be obtained as the average of the k

coefficients β̃k, while the relative weight assigned to the k-periods ago return is given

as the ratio of the coefficient on the k-th term and the equal-weighted average of all

coefficients.

In practice, this approach breaks down if we have to deal with varying experience lengths

24We do not report results for median experienced returns which are virtually identical.
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Ti,j,t, as the number of regressors would change together with Ti,j,t. For this reason, we

group past returns into buckets as a means of fixing the number of regressors. In our first

such specification we divide the stock-specific experience of the manager into five non-

overlapping buckets of equal length, ∆T qi,j,t, with q = {1, 2, 3, 4, 5}25. Table 3 reports

the results of the following regression:

µi,j,t − rf =

Q∑

q=1

βq r̄i,j,t∈∆T qi,j,t
+Hi,t +Hj,t + εi,j,t (19)

forQ = 5 and where r̄i,j,t∈∆T qi,j,t
, q ∈ {1, 2, 3, 4, 5}, is the average return in the q-th bucket.

Table 4 reports the results for ten non-overlapping buckets of equal length, i.e., the spec-

ification in equation (19) for Q = 10. In both cases we focus on the subsample of single-

managed funds. To better visualise the results, the estimated coefficients of a regression

with five buckets are reported in the upper panel of Figure 4, while the bottom panel

reports the results for ten buckets. The picture immediately reveals that the effect of past

experienced returns is clearly neither constant nor monotone. Consider, for instance, our

first model of expected returns with Q = 5 for which we show results in column (1) of

Table 3: an increase of a standard deviation in experienced average quarterly return in

the most recent or in the earliest period of holding the stock increases the expected return

by roughly 0.25% (β1 = 0.276 and β5 = 0.238); on the other hand, the effect of an increase

of one standard deviation midway through the manager’s experience has an effect lower

by almost an order of magnitude (β3 = 0.041). Figure 4 confirms that the effect of ex-

perienced returns is “U-shaped” regardless of whether we include the zero weights and

independently from the estimator for the covariance matrix used. The lower panel of

the figure reports the results for Q = 10, painting almost an identical picture. The coef-

25To cast this specification in terms of the previously discussed model, let us denote each bucket by
∆T qi,j,t and its length as |∆T qi,j,t|. We then have that δk = βq

Ti,j,t
|∆Tqi,j,t|

, where for each time index k in bucket

∆T qi,j,t we assign a common effect βq and take the average return r̄i,j,t∈∆T
q
i,j,t

=
∑
k∈∆T

q
i,j,t

rj,t+1−k
|∆Tqi,j,t|

. No-

tice that Ti,j,t
|∆Tqi,j,t|

≈ 5, where the approximation derives from the fact that we have to split ties when the

experience length is not a multiple of five.
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Table 3 : The Effect of Experienced Returns - Five Buckets
The table reports the parameter estimates obtained from the following regression: µi,j,t − rf =∑5
q=1 βq r̄i,j,t∈∆T

q
i,j,t

+Hi,t +Hj,t + εi,j,t, where µi,j,t − rf is the recovered expected one-period ahead
return of manager i for stock j at time t, r̄i,j,t∈∆T

q
i,j,t

, q ∈ {1, 2, 3, 4, 5}, is the standardised average re-
turn in the q-th bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. To be
included, a manager-stock pair must have at least 5 quarters of experience. Standard errors are clus-
tered at the same level of the fixed effects and are reported in parentheses. Columns (1)-(3) report results
without wi,j,t = 0, namely including in the computations only strictly positive weights; columns (4)-(6)
include zero weights on stocks that belong to the manager’s investment universe. Columns (1) and (4)
use sample covariance matrices Σ̂1

t , columns (2) and (5) use Touloumis (2015) covariance matrices Σ̂2
t

and columns (3) and (6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation of Σ̂twt.

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.276∗∗∗ 0.287∗∗∗ 0.272∗∗∗ 0.275∗∗∗ 0.273∗∗∗ 0.281∗∗∗

(0.008) (0.013) (0.008) (0.006) (0.007) (0.006)

β2 0.134∗∗∗ 0.132∗∗∗ 0.136∗∗∗ 0.134∗∗∗ 0.132∗∗∗ 0.136∗∗∗

(0.005) (0.005) (0.005) (0.003) (0.003) (0.004)

β3 0.041∗∗∗ 0.043∗∗∗ 0.040∗∗∗ 0.042∗∗∗ 0.042∗∗∗ 0.046∗∗∗

(0.004) (0.004) (0.004) (0.002) (0.003) (0.003)

β4 0.073∗∗∗ 0.073∗∗∗ 0.077∗∗∗ 0.075∗∗∗ 0.072∗∗∗ 0.078∗∗∗

(0.003) (0.003) (0.004) (0.002) (0.002) (0.002)

β5 0.238∗∗∗ 0.237∗∗∗ 0.241∗∗∗ 0.238∗∗∗ 0.237∗∗∗ 0.237∗∗∗

(0.004) (0.004) (0.004) (0.003) (0.003) (0.003)

N 796, 021 796, 021 796, 021 1, 958, 072 1, 958, 072 1, 958, 072

R2 0.798 0.786 0.792 0.720 0.705 0.708

Within-R2 0.042 0.043 0.043 0.043 0.042 0.042

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4 : The Effect of Experienced Returns - Ten Buckets
The table reports the parameter estimates obtained from the following regression: µi,j,t − rf =∑10
q=1 βq r̄i,j,t∈∆T

q
i,j,t

+Hi,t +Hj,t + εi,j,t, where µi,j,t − rf is the recovered expected one-period ahead
return of manager i for stock j at time t, r̄i,j,t∈∆T

q
i,j,t

, q ∈ {1, 2, ..., 10}, is the standardised average re-
turn in the q-th bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. To be
included, a manager-stock pair must have at least 10 quarters of experience. Standard errors are clus-
tered at the same level of the fixed effects and are reported in parentheses. Columns (1)-(3) report results
without wi,j,t = 0, namely including in the computations only strictly positive weights; columns (4)-(6)
include zero weights on stocks that belong to the manager’s investment universe. Columns (1) and (4)
use sample covariance matrices Σ̂1

t , columns (2) and (5) use Touloumis (2015) covariance matrices Σ̂2
t

and columns (3) and (6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation of Σ̂twt.

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.276∗∗∗ 0.293∗∗∗ 0.258∗∗∗ 0.271∗∗∗ 0.290∗∗∗ 0.268∗∗∗

(0.012) (0.039) (0.010) (0.010) (0.017) (0.007)

β2 0.147∗∗∗ 0.163∗∗∗ 0.141∗∗∗ 0.149∗∗∗ 0.157∗∗∗ 0.148∗∗∗

(0.008) (0.023) (0.009) (0.006) (0.009) (0.005)

β3 0.100∗∗∗ 0.102∗∗∗ 0.098∗∗∗ 0.100∗∗∗ 0.102∗∗∗ 0.096∗∗∗

(0.006) (0.011) (0.006) (0.004) (0.005) (0.004)

β4 0.060∗∗∗ 0.058∗∗∗ 0.067∗∗∗ 0.059∗∗∗ 0.066∗∗∗ 0.061∗∗∗

(0.006) (0.008) (0.006) (0.004) (0.004) (0.003)

β5 0.028∗∗∗ 0.023∗∗∗ 0.021∗∗∗ 0.029∗∗∗ 0.030∗∗∗ 0.025∗∗∗

(0.005) (0.008) (0.005) (0.003) (0.003) (0.003)

β6 0.022∗∗∗ 0.024∗∗∗ 0.019∗∗∗ 0.021∗∗∗ 0.027∗∗∗ 0.024∗∗∗

(0.004) (0.006) (0.004) (0.003) (0.003) (0.003)

β7 0.020∗∗∗ 0.027∗∗∗ 0.026∗∗∗ 0.024∗∗∗ 0.020∗∗∗ 0.023∗∗∗

(0.004) (0.005) (0.004) (0.002) (0.002) (0.003)

β8 0.043∗∗∗ 0.045∗∗∗ 0.040∗∗∗ 0.045∗∗∗ 0.046∗∗∗ 0.046∗∗∗

(0.004) (0.006) (0.005) (0.002) (0.003) (0.003)

β9 0.080∗∗∗ 0.088∗∗∗ 0.087∗∗∗ 0.086∗∗∗ 0.088∗∗∗ 0.087∗∗∗

(0.006) (0.007) (0.004) (0.004) (0.003) (0.003)

β10 0.206∗∗∗ 0.204∗∗∗ 0.206∗∗∗ 0.208∗∗∗ 0.216∗∗∗ 0.215∗∗∗

(0.005) (0.005) (0.005) (0.003) (0.003) (0.003)

N 442, 353 442, 353 442, 353 1, 073, 779 1, 073, 779 1, 073, 779

R2 0.824 0.812 0.820 0.750 0.736 0.738

Within-R2 0.039 0.041 0.039 0.039 0.042 0.039

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 4 : Weights on Past Experience
The figure reports the parameter estimates for βq obtained from the following regression: µi,j,t − rf =∑Q
q=1 βq r̄i,j,t∈∆T

q
i,j,t

+Hi,t +Hj,t + εi,j,t, where µi,j,t − rf is the recovered expected one-period ahead
return of manager i for stock j at time t, r̄i,j,t∈∆T

q
i,j,t

is the standardised average return in the q-th
bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. The upper panel reports
the results for Q = 5, while the bottom panel for Q = 10. To be included in the upper panel, a manager-
stock pair must have at least 5 quarters of experience, while 10 quarters are needed for the bottom
panel. Measures (1)-(3) report results without wi,j,t = 0, namely including in the computations only
strictly positive weights; measures (4)-(6) include zero weights on stocks that belong to the manager’s
investment universe. Measures (1) and (4) use sample covariance matrices Σ̂1

t , measures (2) and (5) use
Touloumis (2015) covariance matrices Σ̂2

t and measures (3) and (6) use Ledoit and Wolf (2004) covariance
matrices Σ̂3

t in the computation of Σ̂twt.
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ficients for the ten buckets are similar in magnitude to those for the regression with five

buckets and follow the same “U-shaped” pattern. We report in Appendix D the results

for various other specifications: Tables 2 and 3 report the results of the previous mod-

els with stock fixed effects and the previously mentioned controls, while Tables 4 and 5

describe the results for a model with three non-overlapping equal-sized buckets; finally

Tables 6, 7 and 8, 9 report the results for three non-overlapping buckets of unequal length

(with stock-time fixed effects or stock fixed effects and varying controls), where the first

and last buckets consist of four and eight quarters, respectively. All these specifications

confirm the previously discussed results: experienced returns are important in determin-
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ing expected returns and most of the impact comes from most recent and earliest stock-

specific observations. This is evidence in favour of the so-called serial-position effect,

concept well studied among researchers in psychology (Murdock, 1974). Moreover, our

findings reconcile two apparently distinct phenomena observed in previous research: on

the one hand, Malmendier and Nagel (2011) show that economic agents are principally

affected by recent experience, while on the other hand Kaustia and Knüpfer (2008) and

Hirshleifer et al. (2019) report evidence in favour of the primacy effect or first impression

bias. We show that both effects are present in mutual fund managers and that they need

to be separately considered.

So far we have focused our attention on single-managed funds, but one might be in-

terested to know whether the above findings are, in fact, weaker in cases when managers

work in teams. We might expect this to be true to the extent that stock-manager specific

experience should somewhat cancel out when we group together managers with differ-

ent experiences. In the next section, we investigate the effect of the number of managers

within a team on portfolio holdings and recovered beliefs.

4.1 Co-managed Funds

In this section we check the impact of the number of managers within a team on the

effect of experience. Our hypothesis is that personal stock-specific experiences should

partly offset each other within a team, so long as the managers that form part of the team

have followed different career paths. To explore this hypothesis, we run the following

regression:

µi,j,t − rf =

Q∑

q=1

βq,nr̄i,j,t∈∆T qi,j,t
+Hi,t +Hj,t + εi,j,t (20)

We split managers into subsamples based on the number of co-managers they work with,

i.e., ni,t ∈{1, 2, 3, 4 or more} signifies that the manager works in a team of one, two, three

or four or more people. We thus obtain a different set of coefficients βq,n for each com-

bination of buckets and size of the management team. To save on space, we report in
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Table 5 : The Effect of Experienced Returns by Number of Managers
The table reports the parameter estimates obtained from the following regression: µi,j,t − rf =∑Q
q=1 βq,nr̄i,j,t∈∆T

q
i,j,t

+Hi,t +Hj,t + εi,j,t, where µi,j,t− rf is the recovered expected one-period ahead
return of manager i for stock j at time t, r̄i,j,t∈∆T

q
i,j,t

, q ∈ {1, 2, 3, 4, 5}, is the standardised average return
in the q-th bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. Each column
reports the results for the sub-sample of managers working in a team of ni,t ∈ {1, 2, 3, 4 or more}, mem-
bers at time t. Standard errors are clustered at the same level of the fixed effects and are reported in
parentheses. The first four columns report results for measure (1), using sample covariance matrices
Σ̂1
t and no wi,j,t = 0, namely including in the computations only strictly positive weights; the last four

columns report results for measure (4), using sample covariance matrices Σ̂1
t and including zero weights

on stocks that belong to the manager’s investment universe.

Expected Returns

(1) (4)

Nr. Managers 1 2 3 ≥ 4 1 2 3 ≥ 4

β1 0.276∗∗∗ 0.114∗∗∗ 0.006∗∗ 0.015∗∗∗ 0.275∗∗∗ 0.114∗∗∗ 0.006∗∗∗ 0.005∗∗∗

(0.008) (0.014) (0.003) (0.003) (0.006) (0.008) (0.002) (0.002)

β2 0.133∗∗∗ 0.053∗∗∗ 0.004∗∗ 0.008∗∗∗ 0.134∗∗∗ 0.047∗∗∗ 0.004∗∗∗ 0.001

(0.005) (0.005) (0.002) (0.002) (0.003) (0.004) (0.001) (0.002)

β3 0.040∗∗∗ 0.011∗∗∗ 0.004∗∗ 0.006∗∗∗ 0.041∗∗∗ 0.010∗∗∗ 0.006∗∗∗ 0.003∗∗

(0.004) (0.004) (0.002) (0.002) (0.002) (0.003) (0.001) (0.001)

β4 0.072∗∗∗ 0.014∗∗∗ 0.000 0.001 0.074∗∗∗ 0.015∗∗∗ 0.003∗∗∗ 0.001

(0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001)

β5 0.237∗∗∗ 0.017∗∗∗ 0.002∗∗ 0.001 0.237∗∗∗ 0.019∗∗∗ 0.004∗∗∗ 0.001

(0.004) (0.002) (0.001) (0.001) (0.003) (0.001) (0.001) (0.001)

N 796, 021 580, 367 1, 000, 968 790, 078 1, 958, 072 1, 455, 284 2, 773, 180 2, 181, 406

R2 0.798 0.912 0.991 0.989 0.720 0.866 0.984 0.978

Within-R2 0.042 0.002 0.000 0.001 0.043 0.003 0.001 0.000

wi,j,t = 0 No No No No Yes Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂1

t Σ̂1
t Σ̂1

t Σ̂1
t Σ̂1

t Σ̂1
t Σ̂1

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 5 : Weights on Past Experience by Number of Managers
The figure reports the parameter estimates for βq,n obtained from the following regression: µi,j,t − rf =∑Q
q=1 βq,nr̄i,j,t∈∆T

q
i,j,t

+Hi,t +Hj,t + εi,j,t, where µi,j,t− rf is the recovered expected one-period ahead
return of manager i for stock j at time t, r̄i,j,t∈∆T

q
i,j,t

, is the standardised average return in the q-th
bucket,Hi,t is a manager-time fixed effect, andHj,t is a stock-time fixed effect. The horizontal axis refers
to q, while each line to ni,t ∈ {1, 2, 3, 4 or more}. The top row reports the results forQ = 5, the bottom for
Q = 10. The left column plots coefficients for measure (1), namely expected excess returns are computed
without wi,j,t = 0 and using the sample covariance matrix Σ̂1

t ; the right column for measure (4), namely
expected excess returns are computed with wi,j,t = 0 and using the sample covariance matrix Σ̂1

t .
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Table 5 of the main text the results of this exercise for Q = 5 buckets; the results for the

specification with 10 buckets are reported in Table 10 in Appendix D. To better visualise

the results, Figure 5 displays the coefficients βq,n. The two plots on the left-hand-side of

the figure show the results for measure (1) while the right-hand-side plots display the co-

efficients for measure (4). The first row reports the results for Q = 5 and the bottom row

for Q = 10 buckets. As one can see in Table 5, the coefficient on the most recently experi-

enced returns for single-managed funds is more than twice as large as the same for funds
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managed by two managers; the difference is even larger for the coefficient on the earli-

est bucket of returns, more specifically, the effect of returns observed at the beginning

of a stock-specific experience is more than ten times greater for single-managed funds

compared to funds managed by at least two people. The effect on managers working in

funds with three or more managers is orders of magnitude lower, while still statistically

significant for recent experienced returns. On the other hand, the effect of early returns

loses significance. The above is visually confirmed by the plots in Figure 5 showing a

rather steep decrease in the coefficients on the earliest bucket of returns across teams of

different sizes, especially when going from a single-managed fund to a fund managed

by two professionals. The findings are equally pronounced for the specification with ten

buckets.

This seems to suggest that a considerable part of personal experience washes out in the

cross-section of managers working in the same team, and more so the further we go in

the past since managers are more likely to change teams over a longer period of time.

On the other hand, recent returns presumably affect all co-managers in a similar way as

they have gone through the same recent experience, having been working for the same

fund. This could justify the difference in spreads observed between buckets at different

horizons, especially if we compare single-managed funds with those managed by two

individuals.

In what follows, we will investigate the impact of taxes on managers’ investment deci-

sions and the potential explanation the tax regime might have thereof. More specifically,

we will examine whether tax considerations can absorb the effect that past experience

has on portfolio weights and expectations formation.

4.2 Taxes

The differential treatment of short-term and long-term capital gains in terms of their tax-

ation, together with the possibility to offset capital gains with capital losses, suggests

that mutual funds will try to defer the realisation of gains and accelerate the realisation
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of losses. This implies that it is optimal from the point of view of minimising the tax bill

for mutual funds to hold on to assets that performed well in the past and sell assets that

had subpar performances26. This, in turn, will imply that the previous results could be

simply driven by tax considerations. One way to solve the problem could be to model

the optimal selling decision in the spirit of Barclay et al. (1998) or Sialm and Zhang (forth-

coming) and check if the effect of experienced returns survives after we have taken tax

considerations into account. However, in what follows, we are taking a reduced-form

approach and make use of the large amount of data on managers who have managed

different funds in their career. In particular, we will focus on the subsample of manager-

stock pairs where the manager had positive holdings of the stock in the past while man-

aging a different mutual fund compared to the one that he is currently managing. In this

setting, tax considerations should be muted given that capital gain overhangs cannot be

transferred from one fund to another.

Table 6 reports the results of a regression of expected returns on five buckets of past expe-

rience for only those managers that have changed funds, while Table 7 reports the results

when we split the previous experience in ten buckets. The results are then summarised

in Figure 6 where the upper panel reports the results for five buckets and the lower panel

for ten buckets. While the number of observations is greatly reduced (from about 800,000

to slightly more than 110,000 observations if we do not include zero weights, and from

about 2 million to approximately 225,000 if we do), the economic and statistical signifi-

cance of the coefficients is virtually unchanged confirming the previous findings: experi-

enced returns have a sizeable influence on expected excess returns, with the majority of

the effect coming from the extreme buckets. If, for instance, we consider measure (1) we

notice that the coefficient on the most recent bucket goes from 0.276 to 0.224, while on the

earliest from 0.238 to 0.199. We infer, therefore, that no more than 20% of the effect might

26Bergstresser and Poterba (2002) show that inflows to mutual funds, and therefore managers’ compensa-
tion, are affected by the amount of unrealised capital gains, implying that there might be a tension between
postponing capital gains indefinitely to provide better after-tax returns for current investors and attracting
new investors. Barclay et al. (1998) explicitly tackle this question, showing that indeed managers tend to
realise gains early to attract new investors.
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Table 6 : Managers Who Have Switched Funds - Five Buckets
The table reports the parameter estimates obtained from the following regression: µi,j,t − rf =∑5
q=1 βq r̄i,j,t∈∆T

q
i,j,t

+Hi,t +Hj,t + εi,j,t, where µi,j,t − rf is the recovered expected one-period ahead
return of manager i for stock j at time t, r̄i,j,t∈∆T

q
i,j,t

, q ∈ {1, 2, 3, 4, 5}, is the standardised average re-
turn in the q-th bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. To be
included, a manager must have in his current investment universe a stock that he has previously held in
a different fund. A manager-stock pair must have at least 5 quarters of experience. Standard errors are
clustered at the same level of the fixed effects and are reported in parentheses. Columns (1)-(3) report
results without wi,j,t = 0, namely including in the computations only strictly positive weights; columns
(4)-(6) include zero weights on stocks that belong to the manager’s investment universe. Columns (1)
and (4) use sample covariance matrices Σ̂1

t , columns (2) and (5) use Touloumis (2015) covariance matri-
ces Σ̂2

t and columns (3) and (6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation of

Σ̂twt.

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.224∗∗∗ 0.272∗∗∗ 0.209∗∗∗ 0.240∗∗∗ 0.214∗∗∗ 0.250∗∗∗

(0.018) (0.031) (0.023) (0.014) (0.014) (0.022)

β2 0.133∗∗∗ 0.116∗∗∗ 0.112∗∗∗ 0.125∗∗∗ 0.117∗∗∗ 0.124∗∗∗

(0.015) (0.016) (0.015) (0.009) (0.009) (0.011)

β3 0.048∗∗∗ 0.046∗∗∗ 0.031∗∗∗ 0.063∗∗∗ 0.049∗∗∗ 0.066∗∗∗

(0.011) (0.014) (0.011) (0.008) (0.007) (0.009)

β4 0.066∗∗∗ 0.071∗∗∗ 0.051∗∗∗ 0.078∗∗∗ 0.065∗∗∗ 0.073∗∗∗

(0.010) (0.010) (0.011) (0.007) (0.006) (0.007)

β5 0.199∗∗∗ 0.199∗∗∗ 0.202∗∗∗ 0.216∗∗∗ 0.219∗∗∗ 0.211∗∗∗

(0.011) (0.013) (0.013) (0.007) (0.007) (0.009)

N 110, 037 110, 037 110, 037 225, 676 225, 676 225, 676

R2 0.892 0.885 0.889 0.843 0.834 0.842

Within-R2 0.034 0.038 0.034 0.040 0.040 0.040

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7 : Managers Who Have Switched Funds - Ten Buckets
The table reports the parameter estimates obtained from the following regression: µi,j,t − rf =∑10
q=1 βq r̄i,j,t∈∆T

q
i,j,t

+Hi,t +Hj,t + εi,j,t, where µi,j,t − rf is the recovered expected one-period ahead
return of manager i for stock j at time t, r̄i,j,t∈∆T

q
i,j,t

, q ∈ {1, 2, ..., 10}, is the standardised average re-
turn in the q-th bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. To be
included, a manager must have in his current investment universe a stock that he has previously held in
a different fund. A manager-stock pair must have at least 10 quarters of experience. Standard errors are
clustered at the same level of the fixed effects and are reported in parentheses. Columns (1)-(3) report
results without wi,j,t = 0, namely including in the computations only strictly positive weights; columns
(4)-(6) include zero weights on stocks that belong to the manager’s investment universe. Columns (1)
and (4) use sample covariance matrices Σ̂1

t , columns (2) and (5) use Touloumis (2015) covariance matri-
ces Σ̂2

t and columns (3) and (6) use Ledoit and Wolf (2004) covariance matrices Σ̂3
t in the computation of

Σ̂twt.

Expected Returns
(1) (2) (3) (4) (5) (6)

β1 0.246∗∗∗ 0.253∗∗∗ 0.252∗∗∗ 0.281∗∗∗ 0.212∗∗∗ 0.198∗∗∗

(0.026) (0.026) (0.027) (0.055) (0.017) (0.021)

β2 0.129∗∗∗ 0.148∗∗∗ 0.127∗∗∗ 0.154∗∗∗ 0.124∗∗∗ 0.116∗∗∗

(0.018) (0.018) (0.020) (0.023) (0.011) (0.013)

β3 0.071∗∗∗ 0.102∗∗∗ 0.106∗∗∗ 0.101∗∗∗ 0.097∗∗∗ 0.071∗∗∗

(0.015) (0.014) (0.018) (0.011) (0.010) (0.010)

β4 0.054∗∗∗ 0.066∗∗∗ 0.074∗∗∗ 0.060∗∗∗ 0.055∗∗∗ 0.042∗∗∗

(0.015) (0.012) (0.017) (0.009) (0.008) (0.009)

β5 0.027∗∗ 0.035∗∗∗ 0.030∗∗∗ 0.040∗∗∗ 0.029∗∗∗ 0.022∗∗∗

(0.013) (0.011) (0.012) (0.008) (0.007) (0.008)

β6 0.026∗∗ 0.025∗∗ 0.015 0.029∗∗∗ 0.012∗ 0.023∗∗∗

(0.011) (0.011) (0.013) (0.007) (0.007) (0.006)

β7 0.011 0.019∗ 0.013 0.027∗∗∗ 0.020∗∗∗ 0.027∗∗∗

(0.011) (0.010) (0.011) (0.006) (0.007) (0.007)

β8 0.044∗∗∗ 0.031∗∗∗ 0.033∗∗ 0.056∗∗∗ 0.040∗∗∗ 0.038∗∗∗

(0.012) (0.011) (0.013) (0.007) (0.006) (0.007)

β9 0.090∗∗∗ 0.073∗∗∗ 0.085∗∗∗ 0.084∗∗∗ 0.086∗∗∗ 0.077∗∗∗

(0.012) (0.013) (0.012) (0.008) (0.007) (0.007)

β10 0.183∗∗∗ 0.169∗∗∗ 0.180∗∗∗ 0.195∗∗∗ 0.193∗∗∗ 0.200∗∗∗

(0.014) (0.014) (0.016) (0.010) (0.009) (0.009)

N 78, 920 78, 920 78, 920 160, 237 160, 237 160, 237

R2 0.914 0.915 0.914 0.869 0.865 0.867

Within-R2 0.038 0.037 0.039 0.044 0.040 0.039

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time
Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 6 : Weights on Past Experience - Managers Who Have Switched Funds
The figure reports the parameter estimates for βq obtained from the following regression: µi,j,t − rf =∑Q
q=1 βq r̄i,j,t∈∆T

q
i,j,t

+Hi,t +Hj,t + εi,j,t, where µi,j,t − rf is the recovered expected one-period ahead
return of manager i for stock j at time t, r̄i,j,t∈∆T

q
i,j,t

is the standardised average return in the q-th
bucket, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. The upper panel reports
the results for Q = 5, while the bottom panel for Q = 10. To be included, a manager must have in his
current investment universe a stock that he has previously held in a different fund. In the upper panel,
manager-stock pairs have at least 5 quarters of experience, while 10 quarters are needed for the bottom
panel. Measures (1)-(3) report results without wi,j,t = 0, namely including in the computations only
strictly positive weights; measures (4)-(6) include zero weights on stocks that belong to the manager’s
investment universe. Measures (1) and (4) use sample covariance matrices Σ̂1

t , measures (2) and (5) use
Touloumis (2015) covariance matrices Σ̂2

t and measures (3) and (6) use Ledoit and Wolf (2004) covariance
matrices Σ̂3

t in the computation of Σ̂twt.
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be due to tax considerations and we confirm both the recency and the first impression bias.

Having presented the reduced-form results of our analysis, we now proceed to de-

veloping a structural model of learning and estimate its parameters.

5 Structural Results

The reduced-form evidence of the previous section taught us that: experience matters,

i.e., average experienced returns are an important determinant of expected returns and;

the effect of experience is neither constant nor monotone, in particular, earliest and most

recent experience matters the most. However, as shown in Section 4, estimating the shape

of the weighting function required us to drop a sizeable amount of observations and

potentially lose significant information. For this reason we will posit a functional form

for the learning weights and try to estimate its parameters. As Figures 4, 5 and 6 show, we

need to allow for non-monotone weights if we want to accurately fit the data. Similarly

to Section 4, we assume that the manager uses a weighted average of experienced returns

in order to predict future returns. Recall the model in equation (17) where the weights
δi,j,t,k
Ti,j,t

captured the differential effect of returns experienced at different points in time. In

this section, we will directly model these weights as follows:

ωi,j,t,k =
δi,j,t,k
Ti,j,t

=
(Ti,j,t − k)λ1kλ2

∑Ti,j,t
k=1 (Ti,j,t − k)λ1kλ2

(21)

The functional form in equation (21) is similar to the one used by Malmendier and Nagel

(2011) and Malmendier and Nagel (2016)27. The weighting function used by these pa-

pers depends only on Ti,j,t − k and, as such, it confounds two separate effects: the first

impression bias and the recency bias. On the other hand, our weighting function has the

advantage of disentangling between these effects: the term Ti,j,t − k measures the dis-

tance between the return observed at time t+ 1− k and the beginning of a stock-specific

experience, hence capturing the first impression bias, while k measures the distance from

27Our weighting scheme collapses to the one used by Malmendier and Nagel (2011) when λ2 = 0.
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the current date t, thus capturing the recency bias. Figure 7 shows how flexible the par-

Figure 7 : Weighting Functions - Various Examples
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simonious parametrisation introduced in equation (21) is. We plot in blue the weighting

function for a manager with Tij,t = 50 quarters of experience for all the combinations of

{λ1, λ2} ∈ {−0.1, 0, 0.1} × {−0.1, 0, 0.1}28 and compare it to the black dashed line rep-

resenting the benchmark 1
Ti,j,t

where the manager equally weights each observation that

forms part of his experience. The first parameter, λ1, governs the strength of the first

impression bias: when it is negative, the manager is overweighting early experiences rel-

ative to the benchmark scenario. The second parameter, λ2, controls the strength of the

recency bias: when the sign of λ2 is negative the manager overweights recent observations

relative to the benchmark, and vice versa. As one can see from the examples in Figure

7, using only two parameters, we are able to capture a variety of shapes including lin-

ear, convex or concave, increasing or decreasing, monotone or non-monotone weighting

schemes arising from the interplay of the recency and first impression bias. Given the evi-

dence from the reduced-form regressions we expect λ1 and λ2 to be negative, implying
28Figure 1 in Appendix D plots the weighting function for {λ1, λ2} ∈ {−2, 0, 2} × {−2, 0, 2}.
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that the managers are subject to both effects.

Table 8 : Learning Parameters
The table reports the parameter estimates obtained from the following regression: µi,j,t − rf =

β
(∑Ti,j,t

k=1 ωi,j,t,kri,j,t+1−k
)

+Hi,t +Hj,t + εi,j,t, where µi,j,t − rf is the recovered expected one-period
ahead return of manager i for stock j at time t, ri,j,t+1−k is the realised return of stock j from time t− k
to t + 1 − k, Hi,t is a manager-time fixed effect, and Hj,t is a stock-time fixed effect. Weights are rep-

resented by the following functional form : ωi,j,t,k =
(Ti,j,t−k)λ1kλ2

∑Ti,j,t
k=1

(Ti,j,t−k)λ1kλ2
. Clustered standard errors

are in parentheses. Columns (1)-(3) report results without wi,j,t = 0, namely including in the compu-
tations only strictly positive weights; columns (4)-(6) include zero weights on stocks that belong to the
manager’s investment universe. Columns (1) and (4) use sample covariance matrices Σ̂1

t , columns (2)
and (5) use Touloumis (2015) covariance matrices Σ̂2

t and columns (3) and (6) use Ledoit and Wolf (2004)
covariance matrices Σ̂3

t in the computation of Σ̂twt.

Expected Returns
(1) (2) (3) (4) (5) (6)

β 0.146∗∗∗ 0.139∗∗∗ 0.144∗∗∗ 0.205∗∗∗ 0.205∗∗∗ 0.207∗∗∗

0.005 0.005 0.005 0.005 0.005 0.005

λ1 -1.901∗∗∗ -1.838∗∗∗ -1.873∗∗∗ -1.663∗∗∗ -1.700∗∗∗ -1.683∗∗∗

0.068 0.064 0.064 0.034 0.038 0.035

λ2 -1.659∗∗∗ -1.487∗∗∗ -1.563∗∗∗ -1.574∗∗∗ -1.610∗∗∗ -1.590∗∗∗

0.108 0.116 0.108 0.053 0.061 0.053

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time
Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Similarly to the model in equation (19) we include manager-time and stock-time fixed

effects to get rid of potentially time-varying unobservable characteristics shared across

stocks and managers, respectively. Table 8 reports the NLS estimates of the following

regression29:

µi,j,t − rf = β



Ti,j,t∑

k=1

ωi,j,t,kri,j,t+1−k


+Hi,t +Hj,t + εi,j,t (22)

29Appendix C provides more details on the estimation procedure.
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Figure 8 : Empirical Weighting Function
The figure plots the weights implied by the parameter estimates obtained from the following regres-

sion: µi,j,t − rf = β
(∑Ti,j,t

k=1 ωi,j,t,kri,j,t+1−k
)

+ Hi,t + Hj,t + εi,j,t, where µi,j,t − rf is the recov-
ered expected one-period ahead return of manager i for stock j at time t according to measure (1),
ri,j,t+1−k is the realised return of stock j from time t − k to t + 1 − k, Hi,t is a manager-time fixed
effect, and Hj,t is a stock-time fixed effect. Weights are represented by the following functional form

: ωi,j,t,k =
(Ti,j,t−k)λ1kλ2

∑Ti,j,t
k=1

(Ti,j,t−k)λ1kλ2
. The upper panel reports weights for a manager with stock-specific

experience of 9 quarters and the lower for 13 quarters.
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ωi,j,t,k =
(Ti,j,t − k)λ1kλ2

∑Ti,j,t
k=1 (Ti,j,t − k)λ1kλ2

Consistent with the reduced-form evidence, both λ1 and λ2 are negative and statistically

significant across all specifications. The magnitude of the effects is illustrated in Figure 8

where we plot the weighting functions at median and average experience of Ti,j,t = 9, 13

quarters using the empirically estimated values for λ1 and λ2 under model (1). It is

evident that the weighting function is always convex and non-monotone, implying that

managers overweight the most recent and the earliest returns observed; for instance, a

manager with an experience of nine quarters will assign a weight of 0.204 (0.347) to the

most recent (earliest) observation, which is 1.84 (3.13) times the benchmark of 1/9. On

the contrary, he will only assign a weight of 0.043 to the middle observation which is

0.39 times the benchmark weight. The results display a slight asymmetry with λ1 being

always larger in magnitude than λ2 implying that the recency bias is marginally weaker

compared to the first impression bias. This is, however, not a robust feature of the data:

Table 11 in Appendix D shows that λ1 and λ2 are almost identical once we include only

manager-time and stock fixed effects, implying that a large fraction of the recency bias

might be captured by stock-time fixed effects as we should expect. Pinning down the

actual magnitude of the two biases is extremely difficult given that we have to get rid

of a large fraction of the variation in expected returns to achieve identification. Finally,

the parameter β in Table 8 measures the average impact of past experience on expected

excess returns: the estimates range between 0.139 and 0.207. This is about 4 basis points

larger than the baseline results in Table 2 where we did not allow for varying weights30.

We therefore confirm that once we take into account the fact that recent and early returns

might have a differential impact, we find an incremental effect of experience on expected

returns. This concludes the main discussion of the paper. However, as explained in

30Note that all the results presented refer to standardised variables. In the case of the results in this

section we estimate β and then scale its value by the standard deviation of
(∑Ti,j,t

k=1 ωi,j,t,kri,j,t+1−k
)

. This
is to avoid directly scaling the weighted average which would affect the computation of the gradient of the
right hand side of equation (22) needed to obtain standard errors.
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Section 2.3, our methodology allows us to examine in more detail the preferences of

investors, which will be the focus of the next section.

6 Risk Aversion

Recall equations (10)-(13); if we assume that subjective expected returns obey the law of

iterated expectations, we are able to extract the risk aversion of managers by exploiting

the cross-section of individual stock holdings. Running regressions of realised excess

returns on scaled demands, as shown in equation (14), we can obtain an estimate for

the risk aversion parameter γ and the bias (or residual hedging demand). We start this

section by providing evidence from pooled regressions and then proceed by showing

results pertaining to the distribution of γi obtained from multiple regressions. Table 9

reports the results of the following pooled regression:

rj,t+1 − rf = α+ γ(Σtw
∗
i,t)j + εi,j,t+1 (23)

where rj,t+1− rf is the realised excess return of stock j from time t to t+ 1, and (Σtw
∗
i,t)j

is the expected excess return of stock j for manager i, at time t, obtained by using the

optimal demand w∗i,t of the same manager scaled by the conditional covariance matrix

Σt. If we assume that preferences are constant across managers and time, we obtain

a risk aversion coefficient close to unity (between 0.915 and 1.283 across specifications)

for our representative investor. While the estimate is low compared to other measures

obtained from asset prices (Mehra and Prescott, 1985; Kocherlakota, 1996), it is consistent

with measures derived from labour choices (Chetty, 2006) and option prices (Martin,

2017). Our representative investor displays a quite large and statistically significant bias

(or residual hedging demand) of about 1% per quarter.

The pooled results in Table 9 mask a sizeable amount of variability across managers.

For this reason, we proceed in estimating separate regressions, one for each manager in
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Table 9 : Risk Aversion - Pooled Regressions
The table reports the parameter estimates obtained from the following pooled regression: rj,t+1 − rf =
α+γ(Σtw

∗
i,t)j + εi,j,t+1, where rj,t+1−rf is the realised excess return of stock j from time t to t+1, and

(Σtw
∗
i,t)j is the demand of manager i for stock j at time t scaled by the conditional covariance matrix

Σt. α is the pooled estimated bias across managers and time, γ is the pooled estimated risk aversion
across managers and time. Standard errors are clustered at the manager-time and stock-time level and
reported in parentheses. Columns (1)-(3) report results without wi,j,t = 0, namely including in the
computations only strictly positive weights; columns (4)-(6) include zero weights on stocks that belong
to the manager’s investment universe. Columns (1) and (4) use sample covariance matrices Σ̂1

t , columns
(2) and (5) use Touloumis (2015) covariance matrices Σ̂2

t and columns (3) and (6) use Ledoit and Wolf
(2004) covariance matrices Σ̂3

t in the computation of Σ̂twt.

Expected Returns

(1) (2) (3) (4) (5) (6)

α 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

γ 0.915∗∗∗ 0.999∗∗∗ 0.958∗∗∗ 1.204∗∗∗ 1.283∗∗∗ 1.255∗∗∗

(0.079) (0.082) (0.080) (0.077) (0.079) (0.078)

N 5, 383, 850 5, 383, 850 5, 383, 850 12, 545, 295 12, 545, 295 12, 545, 295

R2 0.004 0.004 0.004 0.006 0.006 0.006

wijt = 0 No No No Yes Yes Yes

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

the sample:

rj,t+1 − rf = αi + γi(Σtw
∗
i,t)j + εi,j,t+1 (24)

Given that there seems to be limited difference resulting from the choice of the covari-

ance matrix Σt, we report the results using the sample covariance Σ̂1
t . Table 10 reports

summary statistics for elicited risk aversion and bias referring to measure (1)31. We ob-

tain a median (average) relative risk aversion of 1.117 (1.236), in line with the pooled

31The results for measure (4) can be found in Appendix D.
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Table 10 : Risk Aversion and Bias - Summary Statistics
The table reports the summary statistics of the parameter estimates α̂i and γ̂i obtained by running one
regression per manager with the following specification: rj,t+1− rf = αi + γi(Σtw

∗
i,t)j + εi,j,t+1, where

rj,t+1 − rf is the realised excess return of stock j from time t to t + 1, and (Σtw
∗
i,t)j is the demand of

manager i for stock j at time t scaled by the conditional covariance matrix Σt. The reported results are
obtained under measure (1), using sample covariance matrices Σ̂1

t and no wi,j,t = 0, namely including
in the computations only strictly positive weights.

α̂i γ̂i

mean 0.007 1.236

standard deviation 0.068 5.850

median 0.010 1.117

min -0.676 -44.666

max 0.736 48.631

skewness -0.626 1.075

kurtosis 27.395 13.200

results; however, there is a wide dispersion in the estimates with a standard deviation of

5.850. The estimates display positive skewness and are leptokurtic. When we allow for

variation in preferences across managers, the bias is reduced on average: the mean bias

is only 0.7% and the median bias is 1% per quarter. Figure 9 displays a histogram of the

distribution of αi and γi after we have removed outliers. Unfortunately our methodol-

ogy does not prevent us from obtaining negative values for γi whenever the cross-section

of revealed beliefs is negatively correlated with realised returns, conflating with the bias

αi. Most of the mass, however, seems to be represented by positive values of γi.

We then proceed to exploit the variation of preferences across managers and analyse

whether tenure affects risk aversion and bias. Figure 10 displays the bias and the risk

aversion as a function of tenure for measures (1) and (4). It is hard to detect a specific

pattern in either of the measures; longer tenures seem to be dominated by noise, given

that they make use of fewer estimations by construction. Finally, Figure 11 reports the

results by date: also in this case it is hard to detect any conclusive evidence. Unfortu-
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Figure 9 : Bias and Risk Aversion
The figure shows the empirical distribution of the parameter estimates α̂i,t and γ̂i,t obtained by running
one regression per manager with the following specification: rj,t+1 − rf = αi + γi(Σtw

∗
i,t)j + εi,j,t+1,

where rj,t+1−rf is the realised excess return of stock j from time t to t+1, and (Σtw
∗
i,t)j is the demand of

manager i for stock j at time t scaled by the conditional covariance matrix Σt. The dashed lines represent
the median bias and risk aversion. The histogram is trimmed for outliers to visualise the centre of the
distribution.
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nately, our measures of risk aversion cannot be used to predict or explain future returns

given they have been obtained from them: by construction they represent the best linear

predictor of rj,t+1 − rf given the information contained in (Σtw
∗
i,t)j .

7 Conclusions

The paper contributes to the literature on the effect of personal experience on learning

and expected returns by analysing a large sample of more than 3,000 professional in-

vestors (mutual fund managers) that have been tracked throughout their careers in the

35 years period between 1980 and 2015. Section 2.1 has shown that in a variety of cases it
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Figure 10 : Bias and Risk Aversion by Tenure
The figure plots the parameter estimates α̂τ and γ̂τ obtained by running one regression per tenure τ with
the following specification: rj,t+1 − rf = ατ + γτ (Σtw

∗
i,t)j + εi,j,t+1, where rj,t+1 − rf is the realised

excess return of stock j from time t to t+1, and (Σtw
∗
i,t)j is the demand of manager i for stock j at time t

scaled by the conditional covariance matrix Σt. Bias is the estimated parameter α̂τ , while Risk Aversion
is the estimated parameter γ̂τ . Tenure is measured in quarters since the first observation where we can
identify the manager. The shaded grey area covers two standard deviations around the point estimate.
The left panel reports results for measure (1), using sample covariance matrices Σ̂1

t and no wi,j,t = 0,
namely including in the computations only strictly positive weights; the right panel reports results for
measure (4), using sample covariance matrices Σ̂1

t and including zero weights on stocks that belong to
the manager’s investment universe.
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is possible to invert the portfolio demands of our investors to obtain their subjective ex-

pected returns by using the identifying assumption that, while beliefs vary at the stock-

investor-time level, risk aversion varies at the investor-time level, i.e., risk aversion is

constant in the cross-section of stock holdings of a given manager. Similarly, we have

been able to account for many cases in which demands display a hedging component

by saturating the regressions with fixed effects. Indeed we have shown in Section 3 that

almost ninety percent of recovered expected returns can be explained by manager-time

and stock-time fixed effects. We have then provided reduced-form evidence showing

that professional investors overweight experienced returns compared to other informa-
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Figure 11 : Bias and Risk Aversion by Date
The figure plots the parameter estimates α̂i,t and γ̂i,t obtained by running one regression per date with
the following specification: rj,t+1 − rf = αt + γt(Σtw

∗
i,t)j + εi,j,t+1, where rj,t+1 − rf is the realised

excess return of stock j from time t to t+1, and (Σtw
∗
i,t)j is the demand of manager i for stock j at time t

scaled by the conditional covariance matrix Σt. Bias is the estimated paramater α̂t, while Risk Aversion
is the estimated parameter γ̂t. The shaded grey area covers two standard deviations around the point
estimate. The left panel reports results for measure (1), using sample covariance matrices Σ̂1

t and no
wi,j,t = 0, namely including in the computations only strictly positive weights; the right panel reports
results for measure (4), using sample covariance matrices Σ̂1

t and including zero weights on stocks that
belong to the manager’s investment universe.
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tion shared across stocks and individuals: having experienced one standard deviation

increase in quarterly returns on average leads to an increased expected return of about

10-15 basis points per quarter. Various reduced-form specifications in Section 4 and the

structural estimation in Section 5 confirm that the effect of experienced returns is neither

constant nor monotone. We have shown that investors exhibit recency and first impres-

sion bias: an investor with a stock-specific experience of nine quarters overweights the

most recently observed quarterly returns by 1.84 times and the first experienced return

by 3.13 times relative to the constant weight benchmark. These results are most apparent

for managers working alone, as opposed to in a team of two or more, suggesting that a

significant fraction, though not the entirety, of the effect of personal experience cancels
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out once aggregated. By looking at managers who have switched funds, we have elim-

inated the possibility that these findings are purely driven by tax considerations: more

than 80% of the effect remains unexplained by tax considerations. We finally turn to the

issue of estimating risk aversion and find that a representative investor displays a coeffi-

cient of relative risk aversion around unity. The paper also finds that individual investors

exhibit biases when forming expectations. Finally, when we look at more disaggregated

measures, we find that there is large heterogeneity in biases and risk aversion across time

and investors. The results in the paper can inform theorists willing to model the prefer-

ences and the learning behaviour of professional investors in a way that is consistent with

the evidence obtained from portfolio holdings. Consistent with theory more than half of

the variation in expected excess returns can be explained by a common time varying

component. However, an incremental forty percent is due to investor-specific and stock-

specific time-varying effects, hinting at the possibility of time variation in preferences

and stock-specific factors shared across investors. Finally, if interested in modelling the

idiosyncratic part of expected returns, one should pay particular attention to behavioural

factors which play a prominent role as shown by the evidence provided in this paper.

Electronic copy available at: https://ssrn.com/abstract=3301279



REVEALED EXPECTATIONS AND LEARNING BIASES 53

References

Andonov, Aleksandar and Joshua D. Rauh, “The Return Expectations of Institutional

Investors,” Working Paper, November 2018.

Arrow, Kenneth J., “The Theory of Risk Aversion,” in “Aspects of The Theory of Risk

Bearing” 1965.

Asch, Solomon E, “Forming impressions of personality.,” The Journal of Abnormal and

Social Psychology, 1946, 41 (3), 258.

Back, Kerry E., Asset Pricing and Portfolio Choice Theory, Oxford University Press, 2017.

Barclay, Michael J., Neil D. Pearson, and Michael S. Weisbach, “Open-end mutual funds

and capital-gains taxes,” Journal of Financial Economics, 1998, 49 (1), 3 – 43.

Benos, Evangelos, Marek Jochec, and Victor Nyekel, “Can mutual funds time risk fac-

tors?,” The Quarterly Review of Economics and Finance, 2010, 50 (4), 509 – 514.

Bergstresser, Daniel and James Poterba, “Do after-tax returns affect mutual fund in-

flows?,” Journal of Financial Economics, 2002, 63 (3), 381 – 414.

Black, Fisher and Robert Litterman, “Global Portfolio Optimization,” Financial Analysts

Journal, 1992, 48 (05), 28–43.

Camerer, Colin and Teck Hua Ho, “Experience-weighted attraction learning in normal

form games,” Econometrica, 1999, 67 (4), 827–874.

Chernenko, Sergey, Samuel G. Hanson, and Adi Sunderam, “Who neglects risk? Investor

experience and the credit boom,” Journal of Financial Economics, 2016, 122 (2), 248–269.

Chetty, Raj, “A new method of estimating risk aversion,” American Economic Review, 2006,

96 (5), 1821–1834.

Electronic copy available at: https://ssrn.com/abstract=3301279



54 NICOLAI AND RISTESKA

Chiang, Yao-Min, David Hirshleifer, Yiming Qian, and Ann E Sherman, “Do investors

learn from experience? Evidence from frequent IPO investors,” The Review of Financial

Studies, 2011, 24 (5), 1560–1589.

Choi, James J, David Laibson, Brigitte C Madrian, and Andrew Metrick, “Reinforcement

learning and savings behavior,” The Journal of finance, 2009, 64 (6), 2515–2534.

Cochrane, John H., “Macro-Finance,” Review of Finance, 2017, 21 (3), 945–985.

Cohen, Randolph B, Christopher Polk, and Bernhard Silli, “Best ideas,” LSE Research

Online Documents on Economics 24471, London School of Economics and Political

Science, LSE Library December 2008.

Deese, James and Roger A Kaufman, “Serial effects in recall of unorganized and sequen-

tially organized verbal material.,” Journal of experimental psychology, 1957, 54 (3), 180.

Ebbinghaus, Hermann, “Memory: A contribution to experimental psychology,” 1913,

p. 142.

Erev, Ido and Alvin E Roth, “Predicting how people play games: Reinforcement learn-

ing in experimental games with unique, mixed strategy equilibria,” American economic

review, 1998, pp. 848–881.

Evans, Richard B, “Mutual fund incubation,” The Journal of Finance, 2010, 65 (4), 1581–

1611.

Fazio, Russell, Mark Zanna, and Joel Cooper, “Direct Experience and Attitude-Behavior

Consistency: An Information Processing Analysis,” Personality and Social Psychology

Bulletin, 01 1978, 4, 48–51.

Giglio, Stefano, Matteo Maggiori, Johannes Stroebel, and Stephen Utkus, “Five Facts

About Beliefs and Portfolios,” NBER Working Papers 25744, National Bureau of Eco-

nomic Research, Inc 2019.

Electronic copy available at: https://ssrn.com/abstract=3301279



REVEALED EXPECTATIONS AND LEARNING BIASES 55

Greenwood, Robin and Andrei Shleifer, “Expectations of Returns and Expected Re-

turns,” Review of Financial Studies, 2014, 27 (3), 714–746.

and Stefan Nagel, “Inexperienced investors and bubbles,” Journal of Financial Eco-

nomics, August 2009, 93 (2), 239–258.

Harrison, J. Michael and David M. Kreps, “Martingales and arbitrage in multiperiod

securities markets,” Journal of Economic Theory, June 1979, 20 (3), 381–408.

Hirshleifer, David A, Ben Lourie, Thomas Ruchti, and Phong Truong, “First Impressions

and Analyst Forecast Bias,” Available at SSRN, 2019.

Kacperczyk, Marcin, Clemens Sialm, and Lu Zheng, “Unobserved actions of mutual

funds,” The Review of Financial Studies, 2006, 21 (6), 2379–2416.
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Internet Appendix for “Revealed Expectations and Learning

Biases: Evidence from the Mutual Fund Industry”

A Optimal Portfolio Choice

In what follows, we are going to provide four examples of optimal portfolio choice and

describe how we can (or cannot) achieve identification of beliefs. We will first look at an

investor facing borrowing constraints, second an investor facing short sale constraints,

third we look at an investor worried about model misspecification and, finally, an in-

vestor who is tracking a benchmark. We show that we can identify beliefs in the first

three cases, while the last one requires us to make additional assumptions.

A.1 Borrowing Constraint

We will follow the approach of Cvitanic and Karatzas (1992), Xu and Shreve (1992) and

Tepla (2000). There exist a standard filtered probability space (Ω,F , {Ft}t∈[0,∞),P) where

all the usual regularity conditions are satisfied. We assume that the investor maximises

his expected utility over terminal wealth E0[U(WT )]. Returns follow a geometric Brown-

ian motion and the investor faces a borrowing constraint. He solves the following prob-

lem:

sup
{ws}s∈[0,T ]

E0

[
W 1−γ
T

1− γ

]
s.t. (1)

dBt
Bt

= rfdt, B0 = 1 (2)

dSt
St

= µtdt+ Σ
1
2
t dZt (3)

dWt

Wt
=
dBt
Bt

+w′t

(
dSt
St
− dBt

Bt
1

)
(4)

w′t1 ≤ k (5)

where Bt is the price of a risk-free bond, St is a vector of stock prices, dSt
St

=
[
dS1,t

S1,t
, ... ,

dSj,t
Sj,t

, ...,
dSN,t
S,N,t

]′
, rf is the instantaneous risk-free rate, µt is the vector of stock return

drifts,wt is the vector of stock portfolio weights, Σ
1
2 is the matrix of instantaneous load-

ings on the Brownian motion processes Zt, 1 is a vector of ones and k is a real number.
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Cvitanic and Karatzas (1992) show that the problem in (1)-(5) is equivalent to an uncon-

strained problem with modified drifts, i.e., where (2) and (3) are replaced by:

dBt
Bt

= (rf + δ(vt))dt (6)

dSt
St

= (µt + vt + δ(vt)1)dt+ Σ
1
2
t dZt (7)

where the support function δ(x) = supw′1≤k(−w′x), vt is such that δ(vt) < ∞. Cvitanic

and Karatzas (1992) show that the optimal v∗t and portfolio weights w∗t can be obtained

by solving the ’dual’ Hamilton-Jacobi-Bellman equation1. In particular, the optimal port-

folio weights are:

w∗t =
1

γ
Σ−1
t (µt − rf1− v∗t ) (8)

where v∗t = arg min{v s.t. δ(v)<∞}

[
||θt + Σ

− 1
2

t vt||2 + 2γδ(vt)

]
and θt = Σ

− 1
2

t (µt − rf1).

Tepla (2000) shows that v∗t = v̄∗1 with v̄∗ =
γ(1−γ)−1′Σ−1

t (µt−rf1)

1′Σ−1
t 1

when the borrowing

constraint binds, and zero otherwise. Notice that the above result implies that the solu-

tion to the constrained optimisation problem is equivalent to that of an unconstrained

problem with a risk-free rate shifted by the scalar v̄∗. Identification of beliefs is eas-

ily achieved in (8) by saturating the model with manager-time fixed effects in order to

absorb any variation in manager-specific borrowing constraints. Specifically, for each

manager i solving the above problem, the subjective beliefs can be expressed as:

µi,t − rf1 = γiΣtw
∗
i,t +Hi,t (9)

where the manager-time fixed effect is equal to Hi,t = v̄i
∗1.

A.2 Short Sale Constraints

The managers solves the following problem2:

sup
{ws}s∈[0,T ]

E0

[
W 1−γ
T

1− γ

]
s.t. (10)

1See Sections 12 and 15 of Cvitanic and Karatzas (1992). In particular, see equations (15.1), (15.2) and
(15.10).

2The following problem is similar to the discrete problem analyzed by Koijen and Yogo (2019) as γ → 1.
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dBt
Bt

= rfdt, B0 = 1 (11)

dSt
St

= µtdt+ Σ
1
2
t dZt (12)

dWt

Wt
=
dBt
Bt

+w′t

(
dSt
St
− dBt

Bt
1

)
(13)

− wj,t ≤ 0 ∀j = 1, 2, ..., N (14)

The problem (10)-(14) can be solved by using Cvitanic and Karatzas (1992) and Xu and

Shreve (1992) dual approach, similarly to the previous section. The support function now

becomes δ(x) = sup{−wj,t≤0 ∀j=1,2,...,N}(−w′x). As before, we can find v∗t by solving:

min

[
||θt + Σ

− 1
2

t vt||2 + 2γδ(vt)

]
s.t. (15)

− vt ≤ 0 (16)

Denote the vector of Lagrange multipliers on the the constraint in equation (16) by λt =

[λ1,t, ..., λN,t]
′. Taking first-order conditions of the above minimisation problem yields:

Σ−1
t (µt − rf1 + v∗t ) + λt = 0 (17)

Consider the following partitions: v∗t = [0′ v
(2)∗′
t ]′, λt = [λ

(1)′
t 0′]′, where we have

divided between assets for which the short sale constraint does not bind and those for

which it does. We can also partition the vector of expected excess returns and the covari-

ance matrix: µt − rf1 = [(µ
(1)
t − rf1)′ (µ

(2)
t − rf1)′]′,

Σt =




Σ
(1,1)
t Σ

(1,2)
t

Σ
(2,1)
t Σ

(2,2)
t


 ,

Standard results imply that the inverse of the covariance matrix can be partitioned as:

Σ−1
t =




Ω
(1)
t −Σ

(1,1)−1
t Σ

(1,2)
t Ω

(2)
t

−Σ
(2,2)−1
t Σ

(2,1)
t Ω

(1)
t Ω

(2)
t



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where

Ω
(1)
t =

(
Σ

(1,1)
t − Σ

(1,2)
t Σ

(2,2)−1
t Σ

(2,1)
t

)−1

Ω
(2)
t =

(
Σ

(2,2)
t − Σ

(2,1)
t Σ

(1,1)−1
t Σ

(1,2)
t

)−1

Using the above, rewrite equation (17) as:

0 =




Ω
(1)
t (µ

(1)
t − rf1)− Σ

(1,1)−1
t Σ

(1,2)
t Ω

(2)
t

(
µ
(2)
t − rf1 + v

(2)∗
t

)
+ λ

(1)
t

−Σ
(2,2)−1
t Σ

(2,1)
t Ω

(1)
t

(
µ
(1)
t − rf1

)
+ Ω

(2)
t

(
µ
(2)
t − rf1 + v

(2)∗
t

)


 (18)

Multiplying the second row of (18) by Σ
(1,1)−1
t Σ

(1,2)
t and adding it to the first row allows

us to solve for the Lagrange multipliers:

λ
(1)
t = −Σ

(1,1)−1
t

(
µ
(1)
t − rf1

)
(19)

Insert the multipliers into the first-order condition in equation (17) to obtain:

v∗t =




0

v
(2)∗
t


 =




0

Σ
(1,1)−1
t Σ

(2,1)
t

(
µ
(1)
t − rf1

)
−
(
µ
(2)
t − rf1

)


 (20)

We can now substitute v∗t into equation (8) and solve for the optimal weights:

w∗t =



w

(1)∗
t

0


 =

1

γ




Ω
(1)
t

(
µ
(1)
t − rf1

)
− Σ

(1,1)−1
t Σ

(1,2)
t Ω

(2)
t

(
Σ

(1,1)−1
t Σ

(2,1)
t (µ

(1)
t − rf1)

)

−Σ
(2,2)−1
t Σ

(2,1)
t Ω

(1)
t

(
µ
(1)
t − rf1

)
+ Ω

(2)
t

(
Σ

(1,1)−1
t Σ

(2,1)
t (µ

(1)
t − rf1)

)




(21)

Multiplying the second row by Σ
(1,1)−1
t Σ

(1,2)
t and adding the two rows together gives the

optimal weights on the unconstrained assets:

w
(1)∗
t =

1

γ
Σ

(1,1)−1
t

(
µ
(1)
t − rf1

)
(22)

Intuitively, the optimisation program of a short sale constrained investor results in an

unconstrained portfolio allocation over the set of assets for which the constraint does not
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bind. For each manager i, identification of beliefs can be achieved by inverting equation

(22):

µ
(1)
i,t − rf1 = γiΣ

(1,1)
t w

(1)∗
i,t (23)

A.3 Model Misspecification

In this section we follow the approach of Maenhout (2004) and analyse the behaviour

of an investor worried about model misspecification. The investor solves the following

problem:

J0 = sup
{ws,Cs}

E0

[∫ ∞

0
f(cs, Js)ds

]
s.t. (24)

dBt
Bt

= rfdt, B0 = 1 (25)

dSt
St

= µtdt+ Σ
1
2
t dZt (26)

dWt

Wt
=
dBt
Bt

+w′t

(
dSt
St
− dBt

Bt
1

)
− Ct
Wt

dt (27)

where we have remained vague on the functional form of the value function. Standard

dynamic optimisation arguments yield the following HJB equation:

0 = sup
{wt,Ct}

{f(ct, Jt)dt+ Et [dJt]} (28)

Equation (28) assumes that the investor is certain about the value of Et [dJt] and chooses

his portfolio accordingly. An investor worried about model misspecification will choose

the optimal allocation given the worst-case scenario. Following Anderson et al. (2003),

Maenhout (2004) shows that the wealth of the investor under the endogenously chosen

model for u(Wt) will evolve according to:

dWt = Wt

(
rf +w′t(µt − rf1)− Ct

Wt

)
dt+Wtw

′
tΣ

1
2
t dZt +W 2

t w
′
tΣtwtu(Wt)dt (29)

where u(Wt) is a drift term chosen by the investor to minimise the following expression:

u∗(Wt) = inf
ut

{
Et[dJt|ut] +

1

2Ψ
u2
tW

2
t w
′
tΣtwtdt

}
(30)
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where Et[dJt|ut] is computed under the law of motion in equation (29). Among all the

models for u(Wt) the investor chooses the least favourable one in terms of its effect on

Et[dJt|ut], subject to the entropy constraint 1
2Ψu

2
tW

2
t w
′
tΣtwtdt. The HJB equation thus

becomes:

0 = sup
{wt,Ct}

inf
ut

f(ct, Jt) +
∂Jt
∂t

+ JWtWt

(
rf +w′t(µt − rf1)− Ct

Wt

)
+

JWtW
2
t w
′
tΣtwtut +

1

2Ψ
u2
tW

2
t w
′
tΣtwt +

1

2
JWtWtW

2
t w
′
tΣtwt

(31)

The agent will choose u(Wt)
∗ = −JWtΨ. The optimal portfolio, therefore, will be:

w∗t = − JWt

[JWtWt − J2
Wt

Ψ]Wt
Σ−1
t (µt − rf1) (32)

An investor concerned about model misspecification will behave like an otherwise iden-

tical investor with relative risk aversion of γi,t = − [JWtWt−J2
Wt

Ψ]Wt

JWt
. In this case, identifi-

cation follows in a way similar to the standard model presented in the main text.

A.4 Benchmarking

In the spirit of van Binsbergen et al. (2008), consider an investor who has his objective

function defined over his terminal wealth WT relative to a benchmark portfolio MT . He

will solve the following problem:

J0 = sup
{ws}

E0

[
f

(
WT

Mβ
T

)]
s.t. (33)

dBt
Bt

= rfdt, B0 = 1 (34)

dSt
St

= µtdt+ Σ
1
2
t dZt (35)

dWt

Wt
=
dBt
Bt

+w′t

(
dSt
St
− dBt

Bt
1

)
(36)

The benchmark will have weights θt in the N risky assets and will therefore evolve ac-

cording to:
dMt

Mt
=
dBt
Bt

+ θ′t

(
dSt
St
− dBt

Bt
1

)
(37)
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The problem can be recast in terms of the state variable Xt = Wt

Mβ
t

with the following law

of motion:

dXt

Xt
=((1− β)rf + (wt − βθt)′(µt − rf1))dt− 1

2
β(β − 1)θ′tΣtθtdt+

(wt − βθt)′Σ
1
2
t dZt − (wt − βθt)′Σtβθtdt

(38)

If we set up the HJB equation and take first-order conditions, we obtain the optimal

weights:

w∗t = − JXt
JXtXtXt

Σ−1
t (µt − rf1) + βθt

(
1 +

JXt
JXtXtXt

)
(39)

In this case, it is not obvious that we can identify beliefs. However, if there is no variation

in the objective function in the cross-section of managers adopting the same benchmark

portfolio θt, stock-time fixed effects would suffice to recover expectations. Although the

above model requires an additional assumption to achieve identification, this is consis-

tent with the common practice of evaluating managers using summary statistics such

as CAPM alphas (Berk and Van Binsbergen, 2016; Barber et al., 2016). For instance, set

f

(
WT

Mβ
T

)
= 1

1−γ

(
WT /W0

(MT /M0)β

)1−γ
= 1

1−γ

(
RW,T

RβM,T

)1−γ
. That would be equivalent to solving:

sup
{ws}

E0[rW,T ]− βE0[rM,T ]− (γ − 1)

2
Var0(rW,T − βrM,T ) (40)

where rW,T = logWT /W0 and rM,T = logMT /M0 are log-returns. The manager is max-

imisingα = E0[rW,T ]−βE0[rM,T ] subject to the tracking error penalisation (γ−1)
2 Var0(rW,T−

βrM,T )3. In this case − JXt
JXtXtXt

= 1/γ and we could recover beliefs using:

µi,t − rf1 = γΣtw
∗
i,t +Hj,t (41)

where the stock-time fixed effect isHj,t = (1− γ)βΣtθt.

3As it is well known, the agent penalises tracking error for any value of γ > 0, even for 0 ≤ γ ≤ 1. To

see this, notice that we can substitute Et[rW,T −βrM,T ] = logEt
[
RW,T

R
β
M,T

]
− 1

2
Var0(rW,T −βrM,T ) and obtain

the following objective:

sup
{ws}

logEt

[
RW,T

RβM,T

]
− γ

2
Var0(rW,T − βrM,T )
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B Data Construction

In this section we provide details on the construction of the data that have been used

in the paper. We start with the universe of mutual funds in the CRSP database. We

remove funds whose manager name clearly does not refer to a person4. After having

obtained a list of names of managers, we look for cases in which the same manager is

spelled differently, e.g. ”John Smith”, ”J. Smith”, ”J Smith” or just ”Smith”. To be sure

that the pairing is done correctly we proceed in the following way: first, we compute a

matrix of distances between names using cosine, Jaccard and Jaro-Winkler methods. We

then keep pairs that have a distance below a distance-specific threshold (0.10, 0.17, 0.10

for the cosine, Jaccard and Jaro-Wrinkler methods, respectively) that is set to make sure

that we avoid false negatives. We then proceed to manually check over 15,000 pairs to

guarantee proper matching with the help of online resources and common sense. Af-

ter having obtained a list of managers with the dates in which they manage a specific

fund, we follow Evans (2010) and Benos et al. (2010) to screen for equity mutual funds.

First, if available, we keep funds with the following Lipper class: EIEI, G, LCCE, LCGE,

LCVE, MCCE, MCGE, MCVE, MLCE, MLGE, MLVE, SCCE, SCGE, SCVE. We then keep

the funds with missing Lipper class and the following Strategic Insight Objective Code:

AGG, GMC, GRI, GRO, ING, SCG. If neither of the previous are available, we use the

following Wiesenberger Fund Type Codes: G, G-I, AGG, GCI, GRI, GRO, LTG, MCG,

and SCG. We then keep all the funds with policy equal to CS. Finally, we remove funds

with less than 80% of holdings in common equity, similarly to Kacperczyk et al. (2006).

To check for possible mistakes we keep funds with CRSP objective code starting with E

and M and remove those starting with EF. This provides us with a manager-by-manager

history of the funds managed that we subsequently match with the S12 type1 file from

the Thomson-Reuters Institutional Holdings database, using Russ Wermer’s MFLinks

tables. We then proceed by joining with the S12 type2 and type3 files to obtain a history

of holdings.

We continue by adding stock return and balance sheet data using CRSP and Compustat,

respectively. From the CRSP Compustat Merged Database we select LinkTypes LU and

LC and LinkPrim P and C for stocks with share codes of 10 and 11. After we have merged

4We use various automatic screens like “advisors”, “ltd”, “limited”, etc..., paired with manual inspec-
tion.
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the two datasets, we compute dividends using CRSP returns and returns not including

distributions, similarly to Koijen and Yogo (2019). From Compustat we compute the fol-

lowing quantities: me as market equity, beme as the book to market equity ratio, dp as the

ratio between dividends and market prices, profitability as the ratio between operating

profits and book equity and investment as the growth rate of assets similarly to Fama and

French (2015).

We then proceed with the construction of the scaled demands Σ̂twt. We start from CRSP

daily return data and compute covariance matrices using the previous year. We com-

pute three daily covariance matrices: Σ̂d,1
t which is the sample covariance matrix, and

two Bayesian shrinkage estimates. The first one follows Touloumis (2015) and shrinks

the daily sample covariance towards a target diagonal matrix with the sample vari-

ances on the diagonal, i.e., the resulting estimator is Σ̂d,2
t = λΣ̂d,1

t + (1 − λ)Σtarget
t , with

Σtarget
t = IN ∗ Σ̂d,1

t , where ∗ denotes the Hadamard product and IN is an N × N iden-

tity matrix with N being the number of stocks. The third covariance estimator follows

Ledoit and Wolf (2004) and shrinks the daily covariance matrix towards a diagonal ma-

trix with the average variance on the diagonal, i.e., Σ̂d,3
t = λΣ̂d,1

t + (1 − λ)Σ̃target
t , where

Σ̃target
t =

tr(Σ̂d,1t )
N IN , where tr(Σ̂d,1

t ) is the trace of the daily sample covariance matrix.

The shrinkage intensity λ is chosen similarly to Touloumis (2015) to minimize the risk

function E[||Σ̂d,k
t − Σd

t ||2F ] where ||S||2F = tr(S′S)
dim(S) denotes the Frobenius norm of matrix

S, which results in λ =
Y2,T+Y 2

1,T

TY2,T+N−T+1
N

Y 2
1,T

, where Y1,T = 1
T

∑T
s=1X

′
sXs − 1

PT2

∑
s 6=hX

′
hXs,

Y2,T = 1
PT2

∑
s 6=h(X ′hXs)

2 − 2 1
PT3

∑
s 6=h6=kX

′
sXhX

′
sXk + 1

PT4

∑
s 6=h6=k 6=wXsX

′
hXkX

′
w with

Xj being the vector of stock returns for which we have T observations and P ba = b!
(b−a)! .

Finally, we can scale the matrices Σ̂d,k
t by the average number of trading days in a quarter,

which in our sample is equal to num.obs
num.quarters = 63.07 to obtain our quarterly estimators

Σ̂k
t = num.obs

num.quarters × Σ̂d,k
t . We can then proceed to compute scaled demands as Σ̂k

twt. We

compute two vectors of scaled demands for each estimator: one that does not include

stocks that currently have zero weights, but belong to the investment opportunity set of

the manager, and one that does, i.e., in the first case all the wj,t in wt are different from

zero, while in the second wt has some zero elements. The investment opportunity set is

constructed similarly to Koijen and Yogo (2019) and includes all stocks that are currently

held or have ever been held by the manager in the past 11 quarters.
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C Structural Estimation

As described in Section 5, we estimate the model in equation (22) via non-linear least

squares (NLS). In particular we obtain the coefficients θ̂ = (β̂, λ̂1, λ̂2)′ by minimising the

sum of squared errors:

θ̂ = arg min
θ

∑

i

∑

j

∑

t


µi,j,t − rf − β



Ti,j,t∑

k=1

(Ti,j,t − k)λ1kλ2
∑Ti,j,t

k=1 (Ti,j,t − k)λ1kλ2
ri,j,t+1−k


−Hi,t −Hj,t




2

(42)

We perform the minimisation with (λ̂1, λ̂2) ∈ [−5, 5] × [−5, 5] via Simulated Annealing

and limited-memory BFGS5. Fixed effects are partialled out by demeaning µi,j,t− rf and(∑Ti,j,t
k=1

(Ti,j,t−k)λ1kλ2
∑Ti,j,t
k=1 (Ti,j,t−k)λ1kλ2

ri,j,t+1−k

)
. To compute standard errors, we can rewrite (42)

as:

θ̂ = arg min
θ

1

2

P∑

p=1

(yp − ϕ(xp;θ))2 (43)

where the index p is a short-hand for all the P combinations of i, j, t. We next follow the

approach of Davidson and MacKinnon (2001) and recover standard errors using Gauss-

Newton Regressions. Consider the 3 × 1 gradient vector Ψ(xp;θ) =
∂ϕ(xp;θ)

∂θ and the

following regression:

yp − ϕ(xp; θ̂) = Ψ(xp; θ̂)′b+ up (44)

where we regress the residuals yp−ϕ(xp; θ̂) on the estimated gradient Ψ(xp; θ̂)6. Denote

the P × 3 matrix of gradient observations as Ψ̂ = [Ψ(x1; θ̂), ...,Ψ(xP ; θ̂)]′, then we can

estimate the covariance matrix of the coefficients b using the standard clustered “sand-

wich” estimator:

S(b̂) = (Ψ̂′Ψ̂)−1Ψ̂′Ω̂Ψ̂(Ψ̂′Ψ̂)−1 (45)

Davidson and MacKinnon (2001) show that the covariance matrix of b in (45) is a consis-

tent estimator for the covariance of θ.

5Notice that, conditional on λ1 and λ2, β can be estimated via OLS and, therefore, is left unconstrained.
6For expositional reasons we exclude the estimated fixed effects from θ. Given that they enter linearly

in ψ(xp;θ), their gradients are identical to the matrix containing the full set of dummies and, therefore, can
be taken care of by including dummies on the right hand side of (44) or by demeaning.
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D Additional Results

D.1 Tables

Table 1 : The Effect of Average Experienced Returns

Expected Returns

(1) (2) (3) (4) (5) (6)

β 0.148∗∗∗ 0.140∗∗∗ 0.146∗∗∗ 0.188∗∗∗ 0.179∗∗∗ 0.189∗∗∗

(0.006) (0.005) (0.005) (0.005) (0.005) (0.005)

profitability -0.002 -0.0010 -0.002 -0.003 -0.002 -0.004

(0.001) (0.001) (0.001) (0.002) (0.002) (0.002)

investment 0.040∗∗∗ 0.032∗∗∗ 0.035∗∗∗ 0.051∗∗∗ 0.039∗∗∗ 0.042∗∗∗

(0.007) (0.006) (0.006) (0.006) (0.005) (0.005)

BE/ME 0.012 0.020∗∗∗ 0.012∗ 0.016∗ 0.019∗∗ 0.017∗∗

(0.008) (0.008) (0.007) (0.008) (0.007) (0.007)

ME 0.011 0.009 0.012 0.009 0.0009 0.008

(0.015) (0.012) (0.013) (0.018) (0.016) (0.017)

D/P -0.019∗∗∗ -0.017∗∗∗ -0.018∗∗∗ -0.005 -0.006 -0.005

(0.006) (0.006) (0.006) (0.006) (0.005) (0.005)

N 1, 153, 333 1, 153, 333 1, 153, 333 2, 596, 853 2, 596, 853 2, 596, 853

R2 0.591 0.583 0.588 0.546 0.538 0.536

Within-R2 0.016 0.014 0.015 0.021 0.019 0.021

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2 : The Effect of Experienced Returns - Five Buckets

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.297∗∗∗ 0.283∗∗∗ 0.286∗∗∗ 0.274∗∗∗ 0.264∗∗∗ 0.277∗∗∗

(0.009) (0.010) (0.008) (0.006) (0.007) (0.006)

β2 0.137∗∗∗ 0.129∗∗∗ 0.138∗∗∗ 0.125∗∗∗ 0.115∗∗∗ 0.121∗∗∗

(0.009) (0.008) (0.008) (0.005) (0.005) (0.005)

β3 0.061∗∗∗ 0.054∗∗∗ 0.057∗∗∗ 0.055∗∗∗ 0.048∗∗∗ 0.054∗∗∗

(0.008) (0.008) (0.007) (0.005) (0.004) (0.005)

β4 0.084∗∗∗ 0.083∗∗∗ 0.088∗∗∗ 0.085∗∗∗ 0.078∗∗∗ 0.084∗∗∗

(0.006) (0.006) (0.006) (0.004) (0.004) (0.004)

β5 0.266∗∗∗ 0.259∗∗∗ 0.262∗∗∗ 0.267∗∗∗ 0.258∗∗∗ 0.261∗∗∗

(0.006) (0.006) (0.006) (0.004) (0.004) (0.004)

profitability -0.005∗ 0.0009 -0.005 -0.010∗∗ -0.006 -0.008∗

(0.003) (0.004) (0.004) (0.004) (0.004) (0.004)

investment 0.006 0.003 0.002 0.019∗∗∗ 0.011∗ 0.013∗∗

(0.008) (0.007) (0.007) (0.006) (0.006) (0.006)

BE/ME 0.066∗∗∗ 0.072∗∗∗ 0.062∗∗∗ 0.053∗∗∗ 0.056∗∗∗ 0.054∗∗∗

(0.014) (0.015) (0.016) (0.010) (0.010) (0.010)

ME -0.009 -0.007 -0.005 -0.012 -0.017 -0.013

(0.015) (0.012) (0.013) (0.020) (0.019) (0.019)

D/P -0.008 -0.003 -0.006 0.005 0.003 0.004

(0.007) (0.007) (0.007) (0.007) (0.006) (0.006)

N 724, 999 724, 999 724, 999 1, 783, 648 1, 783, 648 1, 783, 648

R2 0.594 0.587 0.591 0.556 0.547 0.545

Within-R2 0.066 0.064 0.065 0.070 0.067 0.069

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3 : The Effect of Experienced Returns - Ten Buckets

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.259∗∗∗ 0.224∗∗∗ 0.237∗∗∗ 0.235∗∗∗ 0.229∗∗∗ 0.242∗∗∗

(0.011) (0.008) (0.008) (0.007) (0.006) (0.007)

β2 0.123∗∗∗ 0.116∗∗∗ 0.131∗∗∗ 0.124∗∗∗ 0.115∗∗∗ 0.120∗∗∗

(0.007) (0.006) (0.007) (0.005) (0.005) (0.005)

β3 0.098∗∗∗ 0.094∗∗∗ 0.102∗∗∗ 0.088∗∗∗ 0.083∗∗∗ 0.084∗∗∗

(0.006) (0.005) (0.006) (0.005) (0.004) (0.004)

β4 0.078∗∗∗ 0.064∗∗∗ 0.073∗∗∗ 0.069∗∗∗ 0.063∗∗∗ 0.065∗∗∗

(0.006) (0.005) (0.006) (0.004) (0.004) (0.005)

β5 0.059∗∗∗ 0.048∗∗∗ 0.049∗∗∗ 0.047∗∗∗ 0.041∗∗∗ 0.043∗∗∗

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)

β6 0.061∗∗∗ 0.053∗∗∗ 0.055∗∗∗ 0.053∗∗∗ 0.053∗∗∗ 0.052∗∗∗

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)

β7 0.067∗∗∗ 0.066∗∗∗ 0.066∗∗∗ 0.066∗∗∗ 0.057∗∗∗ 0.063∗∗∗

(0.005) (0.005) (0.005) (0.004) (0.003) (0.004)

β8 0.074∗∗∗ 0.063∗∗∗ 0.067∗∗∗ 0.071∗∗∗ 0.070∗∗∗ 0.074∗∗∗

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)

β9 0.107∗∗∗ 0.109∗∗∗ 0.113∗∗∗ 0.120∗∗∗ 0.114∗∗∗ 0.112∗∗∗

(0.005) (0.006) (0.006) (0.004) (0.004) (0.004)

β10 0.243∗∗∗ 0.239∗∗∗ 0.239∗∗∗ 0.243∗∗∗ 0.247∗∗∗ 0.246∗∗∗

(0.006) (0.006) (0.006) (0.004) (0.004) (0.004)

profitability -0.005 -0.003 -0.007 -0.013∗∗ -0.009 -0.011∗

(0.004) (0.005) (0.005) (0.006) (0.005) (0.006)

investment -0.015∗ -0.011 -0.015∗ -0.005 -0.011∗ -0.007

(0.008) (0.007) (0.008) (0.007) (0.006) (0.007)

BE/ME 0.076∗∗∗ 0.078∗∗∗ 0.065∗∗∗ 0.069∗∗∗ 0.071∗∗∗ 0.066∗∗∗

(0.018) (0.019) (0.024) (0.014) (0.013) (0.013)

ME -0.019 -0.014 -0.011 -0.022 -0.028 -0.021

(0.016) (0.015) (0.015) (0.023) (0.021) (0.022)

D/P -0.001 -0.003 -0.006 0.008 0.006 0.010

(0.010) (0.010) (0.009) (0.008) (0.008) (0.008)

N 403, 968 403, 968 403, 968 980, 175 980, 175 980, 175

R2 0.598 0.588 0.596 0.567 0.557 0.555

Within-R2 0.065 0.061 0.063 0.070 0.070 0.071

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4 : The Effect of Experienced Returns - Three Buckets

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.283∗∗∗ 0.294∗∗∗ 0.288∗∗∗ 0.284∗∗∗ 0.288∗∗∗ 0.288∗∗∗

(0.006) (0.007) (0.006) (0.005) (0.005) (0.004)

β2 0.077∗∗∗ 0.082∗∗∗ 0.078∗∗∗ 0.078∗∗∗ 0.079∗∗∗ 0.080∗∗∗

(0.004) (0.004) (0.003) (0.003) (0.003) (0.003)

β3 0.229∗∗∗ 0.231∗∗∗ 0.232∗∗∗ 0.231∗∗∗ 0.231∗∗∗ 0.233∗∗∗

(0.004) (0.004) (0.003) (0.003) (0.002) (0.002)

N 1, 031, 564 1, 031, 564 1, 031, 564 2, 483, 275 2, 483, 275 2, 483, 275

R2 0.777 0.762 0.769 0.704 0.688 0.690

Within-R2 0.039 0.041 0.040 0.040 0.040 0.040

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5 : The Effect of Experienced Returns - Three Buckets

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.280∗∗∗ 0.273∗∗∗ 0.277∗∗∗ 0.273∗∗∗ 0.267∗∗∗ 0.277∗∗∗

(0.008) (0.008) (0.007) (0.005) (0.005) (0.005)

β2 0.073∗∗∗ 0.069∗∗∗ 0.071∗∗∗ 0.066∗∗∗ 0.060∗∗∗ 0.066∗∗∗

(0.006) (0.006) (0.006) (0.005) (0.004) (0.005)

β3 0.236∗∗∗ 0.230∗∗∗ 0.233∗∗∗ 0.238∗∗∗ 0.229∗∗∗ 0.235∗∗∗

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)

profitability -0.001 -0.000 -0.002∗ -0.003 -0.002 -0.004

(0.001) (0.001) (0.001) (0.002) (0.002) (0.002)

investment 0.019∗∗∗ 0.013∗ 0.014∗∗ 0.032∗∗∗ 0.021∗∗∗ 0.024∗∗∗

(0.007) (0.006) (0.007) (0.006) (0.006) (0.006)

BE/ME 0.048∗∗∗ 0.056∗∗∗ 0.048∗∗∗ 0.043∗∗∗ 0.044∗∗∗ 0.044∗∗∗

(0.010) (0.011) (0.011) (0.009) (0.009) (0.008)

ME -0.002 -0.003 0.000 -0.006 -0.014 -0.007

(0.014) (0.012) (0.012) (0.019) (0.017) (0.017)

D/P -0.009 -0.007 -0.008 0.004 0.002 0.003

(0.007) (0.006) (0.006) (0.007) (0.006) (0.006)

N 937, 382 937, 382 937, 382 2, 258, 925 2, 258, 925 2, 258, 925

R2 0.582 0.573 0.578 0.545 0.536 0.535

Within-R2 0.056 0.055 0.056 0.058 0.056 0.059

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6 : The Effect of Experienced Returns - Three Buckets and k = 4 Quarters

Expected Returns

(1) (2) (3) (4) (5) (6)

β2 0.016∗∗∗ 0.015∗∗∗ 0.022∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.014∗∗∗

(0.005) (0.005) (0.005) (0.003) (0.003) (0.003)

β3 0.161∗∗∗ 0.159∗∗∗ 0.160∗∗∗ 0.166∗∗∗ 0.168∗∗∗ 0.165∗∗∗

(0.004) (0.003) (0.003) (0.002) (0.002) (0.002)

N 618, 451 618, 451 618, 451 1, 499, 594 1, 499, 594 1, 499, 594

R2 0.812 0.799 0.807 0.744 0.729 0.733

Within-R2 0.021 0.021 0.021 0.021 0.021 0.020

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7 : The Effect of Experienced Returns - Three Buckets and k = 4 Quarters

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.208∗∗∗ 0.189∗∗∗ 0.198∗∗∗ 0.206∗∗∗ 0.194∗∗∗ 0.205∗∗∗

(0.009) (0.008) (0.008) (0.007) (0.007) (0.007)

β2 0.093∗∗∗ 0.083∗∗∗ 0.089∗∗∗ 0.077∗∗∗ 0.070∗∗∗ 0.076∗∗∗

(0.008) (0.008) (0.007) (0.005) (0.005) (0.005)

β3 0.215∗∗∗ 0.208∗∗∗ 0.209∗∗∗ 0.229∗∗∗ 0.225∗∗∗ 0.223∗∗∗

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)

profitability -0.005 -0.003 -0.007 -0.013∗∗ -0.010 -0.011∗

(0.004) (0.004) (0.005) (0.006) (0.006) (0.006)

investment -0.002 -0.003 -0.006 0.004 -0.001 0.001

(0.008) (0.007) (0.008) (0.007) (0.006) (0.007)

BE/ME 0.056∗∗∗ 0.059∗∗∗ 0.048∗∗∗ 0.052∗∗∗ 0.051∗∗∗ 0.049∗∗∗

(0.013) (0.015) (0.018) (0.012) (0.011) (0.011)

ME -0.006 -0.002 0.001 -0.009 -0.012 -0.007

(0.016) (0.014) (0.015) (0.022) (0.020) (0.021)

D/P -0.008 -0.009 -0.012 0.004 0.002 0.004

(0.008) (0.008) (0.007) (0.007) (0.007) (0.007)

N 564, 287 564, 287 564, 287 1, 367, 732 1, 367, 732 1, 367, 732

R2 0.598 0.590 0.597 0.570 0.560 0.558

Within-R2 0.042 0.039 0.040 0.046 0.044 0.045

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8 : The Effect of Experienced Returns - Three Buckets and k = 8 Quarters.

Expected Returns

(1) (2) (3) (4) (5) (6)

β2 0.020∗∗∗ 0.017∗∗∗ 0.026∗∗∗ 0.014∗∗∗ 0.020∗∗∗ 0.019∗∗∗

(0.004) (0.004) (0.004) (0.002) (0.003) (0.002)

β3 0.137∗∗∗ 0.131∗∗∗ 0.135∗∗∗ 0.136∗∗∗ 0.144∗∗∗ 0.141∗∗∗

(0.004) (0.004) (0.004) (0.002) (0.002) (0.002)

N 343, 058 343, 058 343, 058 753, 526 753, 526 753, 526

R2 0.870 0.864 0.866 0.834 0.821 0.824

Within-R2 0.021 0.020 0.021 0.020 0.022 0.021

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9 : The Effect of Experienced Returns - Three Buckets and k = 8 Quarters.

Expected Returns

(1) (2) (3) (4) (5) (6)

β1 0.168∗∗∗ 0.149∗∗∗ 0.157∗∗∗ 0.165∗∗∗ 0.152∗∗∗ 0.160∗∗∗

(0.010) (0.010) (0.010) (0.009) (0.009) (0.008)

β2 0.067∗∗∗ 0.058∗∗∗ 0.065∗∗∗ 0.066∗∗∗ 0.063∗∗∗ 0.065∗∗∗

(0.006) (0.006) (0.006) (0.005) (0.005) (0.005)

β3 0.179∗∗∗ 0.173∗∗∗ 0.178∗∗∗ 0.183∗∗∗ 0.187∗∗∗ 0.186∗∗∗

(0.006) (0.007) (0.005) (0.005) (0.004) (0.004)

profitability -0.003 -0.003 -0.007 -0.016∗ -0.014 -0.014

(0.004) (0.005) (0.005) (0.008) (0.009) (0.009)

investment -0.029∗∗∗ -0.027∗∗∗ -0.029∗∗∗ -0.029∗∗∗ -0.035∗∗∗ -0.032∗∗∗

(0.010) (0.009) (0.009) (0.009) (0.008) (0.008)

BE/ME 0.093∗∗∗ 0.100∗∗∗ 0.092∗∗∗ 0.077∗∗∗ 0.074∗∗∗ 0.069∗∗∗

(0.027) (0.027) (0.026) (0.019) (0.019) (0.018)

ME -0.015 -0.007 -0.008 -0.023 -0.027 -0.021

(0.019) (0.017) (0.018) (0.027) (0.025) (0.026)

D/P -0.001 0.004 -0.007 0.014 0.009 0.015

(0.010) (0.011) (0.010) (0.011) (0.011) (0.011)

N 314, 557 314, 557 314, 557 691, 634 691, 634 691, 634

R2 0.671 0.661 0.666 0.655 0.644 0.644

Within-R2 0.034 0.031 0.033 0.036 0.036 0.036

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 10 : The Effect of Experienced Returns by Number of Managers

Expected Returns

(1) (4)

Nr. Managers 1 2 3 ≥ 4 1 2 3 ≥ 4

β1 0.280∗∗∗ 0.164∗∗∗ -0.001 0.014∗∗∗ 0.275∗∗∗ 0.160∗∗∗ -0.001 0.008∗∗∗

(0.012) (0.010) (0.003) (0.004) (0.010) (0.008) (0.002) (0.003)

β2 0.149∗∗∗ 0.025∗∗∗ -0.002 0.008∗∗ 0.151∗∗∗ 0.031∗∗∗ -0.002 -0.000

(0.008) (0.007) (0.002) (0.004) (0.006) (0.004) (0.002) (0.002)

β3 0.101∗∗∗ 0.028∗∗∗ -0.002 0.005 0.101∗∗∗ 0.027∗∗∗ -0.001 -0.001

(0.006) (0.004) (0.002) (0.003) (0.004) (0.003) (0.001) (0.002)

β4 0.060∗∗∗ 0.017∗∗∗ -0.004∗∗ 0.001 0.059∗∗∗ 0.017∗∗∗ -0.002∗∗ -0.006∗∗∗

(0.006) (0.003) (0.002) (0.003) (0.004) (0.002) (0.001) (0.002)

β5 0.028∗∗∗ -0.001 -0.003∗∗ 0.001 0.029∗∗∗ -0.001 -0.000 -0.003∗∗

(0.005) (0.002) (0.001) (0.003) (0.003) (0.002) (0.001) (0.002)

β6 0.022∗∗∗ 0.003 -0.001 -0.002 0.021∗∗∗ 0.002 -0.001 -0.001

(0.004) (0.002) (0.001) (0.002) (0.003) (0.002) (0.001) (0.001)

β7 0.020∗∗∗ -0.002 -0.002∗ -0.003∗ 0.024∗∗∗ 0.000 0.000 -0.001

(0.004) (0.002) (0.001) (0.002) (0.002) (0.001) (0.001) (0.001)

β8 0.041∗∗∗ 0.008∗∗∗ -0.002 -0.002 0.044∗∗∗ 0.008∗∗∗ -0.000 0.000

(0.004) (0.002) (0.001) (0.002) (0.002) (0.001) (0.001) (0.001)

β9 0.077∗∗∗ 0.004∗ 0.000 -0.002∗ 0.083∗∗∗ 0.005∗∗∗ -0.000 -0.001

(0.006) (0.002) (0.001) (0.001) (0.004) (0.001) (0.001) (0.001)

β10 0.203∗∗∗ 0.017∗∗∗ -0.002∗∗∗ -0.002 0.204∗∗∗ 0.016∗∗∗ -0.001 0.001

(0.005) (0.002) (0.001) (0.001) (0.003) (0.001) (0.001) (0.001)

N 442, 353 579, 965 558, 722 428, 591 1, 073, 779 1, 454, 292 1, 524, 108 1, 158, 163

R2 0.824 0.912 0.993 0.991 0.750 0.867 0.988 0.982

Within-R2 0.039 0.010 0.000 0.001 0.039 0.012 0.000 0.001

wi,j,t = 0 No No No No Yes Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time Stock×Time

Covariance Σ̂1
t Σ̂1

t Σ̂1
t Σ̂1

t Σ̂1
t Σ̂1

t Σ̂1
t Σ̂1

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 11 : Learning Parameters

Expected Returns

(1) (2) (3) (4) (5) (6)

β 0.203∗∗∗ 0.190∗∗∗ 0.198∗∗∗ 0.246∗∗∗ 0.241∗∗∗ 0.251∗∗∗

0.007 0.007 0.007 0.006 0.006 0.006

λ1 -2.225∗∗∗ -2.223∗∗∗ -2.157∗∗∗ -1.800∗∗∗ -1.929∗∗∗ -1.854∗∗∗

0.128 0.119 0.114 0.066 0.068 0.065

λ2 -2.362∗∗∗ -2.313∗∗∗ -2.265∗∗∗ -1.881∗∗∗ -2.012∗∗∗ -1.951∗∗∗

0.137 0.126 0.121 0.073 0.074 0.072

wi,j,t = 0 No No No Yes Yes Yes

FE Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time Mgr×Time

Stock Stock Stock Stock Stock Stock

Covariance Σ̂1
t Σ̂2

t Σ̂3
t Σ̂1

t Σ̂2
t Σ̂3

t

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 12 : Risk Aversion and Bias Including Zero Weights - Summary Statistics

α̂i γ̂i

mean 0.006 1.501

standard deviation 0.056 5.266

median 0.009 1.441

min -0.431 -43.532

max 0.398 42.658

skewness -1.111 0.954

kurtosis 13.375 13.727
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D.2 Plots

Figure 1 : Weighting Functions - Various Examples
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Figure 2 : Estimated Weighting Functions - Manager-Time, Stock-Time Fixed Effects
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Figure 3 : Estimated Weighting Functions - Manager-Time, Stock Fixed Effects
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Figure 4 : Risk Aversion and Bias Including Zero Weights
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